ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fi0 Unicode version

Theorem fi0 7004
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
fi0  |-  ( fi
`  (/) )  =  (/)

Proof of Theorem fi0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4145 . . 3  |-  (/)  e.  _V
2 fival 6999 . . 3  |-  ( (/)  e.  _V  ->  ( fi `  (/) )  =  {
y  |  E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x } )
31, 2ax-mp 5 . 2  |-  ( fi
`  (/) )  =  {
y  |  E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x }
4 vprc 4150 . . . 4  |-  -.  _V  e.  _V
5 id 19 . . . . . . 7  |-  ( y  =  |^| x  -> 
y  =  |^| x
)
6 elinel1 3336 . . . . . . . . . 10  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  x  e.  ~P (/) )
7 elpwi 3599 . . . . . . . . . 10  |-  ( x  e.  ~P (/)  ->  x  C_  (/) )
8 ss0 3478 . . . . . . . . . 10  |-  ( x 
C_  (/)  ->  x  =  (/) )
96, 7, 83syl 17 . . . . . . . . 9  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  x  =  (/) )
109inteqd 3864 . . . . . . . 8  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  |^| x  =  |^| (/) )
11 int0 3873 . . . . . . . 8  |-  |^| (/)  =  _V
1210, 11eqtrdi 2238 . . . . . . 7  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  |^| x  =  _V )
135, 12sylan9eqr 2244 . . . . . 6  |-  ( ( x  e.  ( ~P (/)  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  _V )
1413rexlimiva 2602 . . . . 5  |-  ( E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x  -> 
y  =  _V )
15 vex 2755 . . . . 5  |-  y  e. 
_V
1614, 15eqeltrrdi 2281 . . . 4  |-  ( E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x  ->  _V  e.  _V )
174, 16mto 663 . . 3  |-  -.  E. x  e.  ( ~P (/) 
i^i  Fin ) y  = 
|^| x
1817abf 3481 . 2  |-  { y  |  E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x }  =  (/)
193, 18eqtri 2210 1  |-  ( fi
`  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160   {cab 2175   E.wrex 2469   _Vcvv 2752    i^i cin 3143    C_ wss 3144   (/)c0 3437   ~Pcpw 3590   |^|cint 3859   ` cfv 5235   Fincfn 6766   ficfi 6997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-er 6559  df-en 6767  df-fin 6769  df-fi 6998
This theorem is referenced by:  fieq0  7005
  Copyright terms: Public domain W3C validator