Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fi0 | Unicode version |
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
fi0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . 3 | |
2 | fival 6935 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | vprc 4114 | . . . 4 | |
5 | id 19 | . . . . . . 7 | |
6 | elinel1 3308 | . . . . . . . . . 10 | |
7 | elpwi 3568 | . . . . . . . . . 10 | |
8 | ss0 3449 | . . . . . . . . . 10 | |
9 | 6, 7, 8 | 3syl 17 | . . . . . . . . 9 |
10 | 9 | inteqd 3829 | . . . . . . . 8 |
11 | int0 3838 | . . . . . . . 8 | |
12 | 10, 11 | eqtrdi 2215 | . . . . . . 7 |
13 | 5, 12 | sylan9eqr 2221 | . . . . . 6 |
14 | 13 | rexlimiva 2578 | . . . . 5 |
15 | vex 2729 | . . . . 5 | |
16 | 14, 15 | eqeltrrdi 2258 | . . . 4 |
17 | 4, 16 | mto 652 | . . 3 |
18 | 17 | abf 3452 | . 2 |
19 | 3, 18 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 cin 3115 wss 3116 c0 3409 cpw 3559 cint 3824 cfv 5188 cfn 6706 cfi 6933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-fi 6934 |
This theorem is referenced by: fieq0 6941 |
Copyright terms: Public domain | W3C validator |