Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fi0 | Unicode version |
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
fi0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4125 | . . 3 | |
2 | fival 6959 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | vprc 4130 | . . . 4 | |
5 | id 19 | . . . . . . 7 | |
6 | elinel1 3319 | . . . . . . . . . 10 | |
7 | elpwi 3581 | . . . . . . . . . 10 | |
8 | ss0 3461 | . . . . . . . . . 10 | |
9 | 6, 7, 8 | 3syl 17 | . . . . . . . . 9 |
10 | 9 | inteqd 3845 | . . . . . . . 8 |
11 | int0 3854 | . . . . . . . 8 | |
12 | 10, 11 | eqtrdi 2224 | . . . . . . 7 |
13 | 5, 12 | sylan9eqr 2230 | . . . . . 6 |
14 | 13 | rexlimiva 2587 | . . . . 5 |
15 | vex 2738 | . . . . 5 | |
16 | 14, 15 | eqeltrrdi 2267 | . . . 4 |
17 | 4, 16 | mto 662 | . . 3 |
18 | 17 | abf 3464 | . 2 |
19 | 3, 18 | eqtri 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wcel 2146 cab 2161 wrex 2454 cvv 2735 cin 3126 wss 3127 c0 3420 cpw 3572 cint 3840 cfv 5208 cfn 6730 cfi 6957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-er 6525 df-en 6731 df-fin 6733 df-fi 6958 |
This theorem is referenced by: fieq0 6965 |
Copyright terms: Public domain | W3C validator |