ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbprc Unicode version

Theorem csbprc 3510
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbprc  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )

Proof of Theorem csbprc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3098 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbcex 3011 . . . . . . 7  |-  ( [. A  /  x ]. y  e.  B  ->  A  e. 
_V )
32con3i 633 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. y  e.  B
)
43pm2.21d 620 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  -> F.  ) )
5 falim 1387 . . . . 5  |-  ( F. 
->  [. A  /  x ]. y  e.  B
)
64, 5impbid1 142 . . . 4  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  <-> F.  ) )
76abbidv 2324 . . 3  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  | F.  }
)
8 fal 1380 . . . 4  |-  -. F.
98abf 3508 . . 3  |-  { y  | F.  }  =  (/)
107, 9eqtrdi 2255 . 2  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
111, 10eqtrid 2251 1  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373   F. wfal 1378    e. wcel 2177   {cab 2192   _Vcvv 2773   [.wsbc 3002   [_csb 3097   (/)c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator