ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbprc Unicode version

Theorem csbprc 3454
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbprc  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )

Proof of Theorem csbprc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3046 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbcex 2959 . . . . . . 7  |-  ( [. A  /  x ]. y  e.  B  ->  A  e. 
_V )
32con3i 622 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. y  e.  B
)
43pm2.21d 609 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  -> F.  ) )
5 falim 1357 . . . . 5  |-  ( F. 
->  [. A  /  x ]. y  e.  B
)
64, 5impbid1 141 . . . 4  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. y  e.  B  <-> F.  ) )
76abbidv 2284 . . 3  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  | F.  }
)
8 fal 1350 . . . 4  |-  -. F.
98abf 3452 . . 3  |-  { y  | F.  }  =  (/)
107, 9eqtrdi 2215 . 2  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
111, 10syl5eq 2211 1  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343   F. wfal 1348    e. wcel 2136   {cab 2151   _Vcvv 2726   [.wsbc 2951   [_csb 3045   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator