| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 |
|
| Ref | Expression |
|---|---|
| abssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 |
. . 3
| |
| 2 | 1 | ss2abi 3265 |
. 2
|
| 3 | abid2 2326 |
. 2
| |
| 4 | 2, 3 | sseqtri 3227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssab2 3277 abf 3504 intab 3914 opabss 4108 relopabi 4803 exse2 5056 mpoexw 6299 tfrlem8 6404 frecabex 6484 fiprc 6907 fival 7072 nqprxx 7659 ltnqex 7662 gtnqex 7663 recexprlemell 7735 recexprlemelu 7736 recexprlempr 7745 4sqlem1 12711 topnex 14558 2sqlem7 15598 |
| Copyright terms: Public domain | W3C validator |