ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi Unicode version

Theorem abssi 3255
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1  |-  ( ph  ->  x  e.  A )
Assertion
Ref Expression
abssi  |-  { x  |  ph }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3  |-  ( ph  ->  x  e.  A )
21ss2abi 3252 . 2  |-  { x  |  ph }  C_  { x  |  x  e.  A }
3 abid2 2314 . 2  |-  { x  |  x  e.  A }  =  A
42, 3sseqtri 3214 1  |-  { x  |  ph }  C_  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   {cab 2179    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167
This theorem is referenced by:  ssab2  3264  abf  3491  intab  3900  opabss  4094  relopabi  4788  exse2  5040  mpoexw  6268  tfrlem8  6373  frecabex  6453  fiprc  6871  fival  7031  nqprxx  7608  ltnqex  7611  gtnqex  7612  recexprlemell  7684  recexprlemelu  7685  recexprlempr  7694  4sqlem1  12529  topnex  14265  2sqlem7  15278
  Copyright terms: Public domain W3C validator