| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 |
|
| Ref | Expression |
|---|---|
| abssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 |
. . 3
| |
| 2 | 1 | ss2abi 3273 |
. 2
|
| 3 | abid2 2328 |
. 2
| |
| 4 | 2, 3 | sseqtri 3235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssab2 3285 abf 3512 intab 3928 opabss 4124 relopabi 4821 exse2 5075 mpoexw 6322 tfrlem8 6427 frecabex 6507 fiprc 6931 fival 7098 nqprxx 7694 ltnqex 7697 gtnqex 7698 recexprlemell 7770 recexprlemelu 7771 recexprlempr 7780 4sqlem1 12826 topnex 14673 2sqlem7 15713 |
| Copyright terms: Public domain | W3C validator |