ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi Unicode version

Theorem abssi 3097
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1  |-  ( ph  ->  x  e.  A )
Assertion
Ref Expression
abssi  |-  { x  |  ph }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3  |-  ( ph  ->  x  e.  A )
21ss2abi 3094 . 2  |-  { x  |  ph }  C_  { x  |  x  e.  A }
3 abid2 2209 . 2  |-  { x  |  x  e.  A }  =  A
42, 3sseqtri 3059 1  |-  { x  |  ph }  C_  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1439   {cab 2075    C_ wss 3000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-in 3006  df-ss 3013
This theorem is referenced by:  ssab2  3106  abf  3330  intab  3723  opabss  3908  relopabi  4576  exse2  4819  tfrlem8  6097  frecabex  6177  fiprc  6586  nqprxx  7159  ltnqex  7162  gtnqex  7163  recexprlemell  7235  recexprlemelu  7236  recexprlempr  7245  topnex  11840
  Copyright terms: Public domain W3C validator