ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi Unicode version

Theorem abssi 3268
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1  |-  ( ph  ->  x  e.  A )
Assertion
Ref Expression
abssi  |-  { x  |  ph }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3  |-  ( ph  ->  x  e.  A )
21ss2abi 3265 . 2  |-  { x  |  ph }  C_  { x  |  x  e.  A }
3 abid2 2326 . 2  |-  { x  |  x  e.  A }  =  A
42, 3sseqtri 3227 1  |-  { x  |  ph }  C_  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   {cab 2191    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179
This theorem is referenced by:  ssab2  3277  abf  3504  intab  3914  opabss  4108  relopabi  4803  exse2  5056  mpoexw  6299  tfrlem8  6404  frecabex  6484  fiprc  6907  fival  7072  nqprxx  7659  ltnqex  7662  gtnqex  7663  recexprlemell  7735  recexprlemelu  7736  recexprlempr  7745  4sqlem1  12711  topnex  14558  2sqlem7  15598
  Copyright terms: Public domain W3C validator