| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abssi | Unicode version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| abssi.1 | 
 | 
| Ref | Expression | 
|---|---|
| abssi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abssi.1 | 
. . 3
 | |
| 2 | 1 | ss2abi 3255 | 
. 2
 | 
| 3 | abid2 2317 | 
. 2
 | |
| 4 | 2, 3 | sseqtri 3217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssab2 3267 abf 3494 intab 3903 opabss 4097 relopabi 4791 exse2 5043 mpoexw 6271 tfrlem8 6376 frecabex 6456 fiprc 6874 fival 7036 nqprxx 7613 ltnqex 7616 gtnqex 7617 recexprlemell 7689 recexprlemelu 7690 recexprlempr 7699 4sqlem1 12557 topnex 14322 2sqlem7 15362 | 
| Copyright terms: Public domain | W3C validator |