Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abssi | Unicode version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 |
Ref | Expression |
---|---|
abssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 | |
2 | 1 | ss2abi 3225 | . 2 |
3 | abid2 2296 | . 2 | |
4 | 2, 3 | sseqtri 3187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cab 2161 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-in 3133 df-ss 3140 |
This theorem is referenced by: ssab2 3237 abf 3464 intab 3869 opabss 4062 relopabi 4746 exse2 4995 mpoexw 6204 tfrlem8 6309 frecabex 6389 fiprc 6805 fival 6959 nqprxx 7520 ltnqex 7523 gtnqex 7524 recexprlemell 7596 recexprlemelu 7597 recexprlempr 7606 4sqlem1 12351 topnex 13137 2sqlem7 14008 |
Copyright terms: Public domain | W3C validator |