ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi Unicode version

Theorem abssi 3217
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1  |-  ( ph  ->  x  e.  A )
Assertion
Ref Expression
abssi  |-  { x  |  ph }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3  |-  ( ph  ->  x  e.  A )
21ss2abi 3214 . 2  |-  { x  |  ph }  C_  { x  |  x  e.  A }
3 abid2 2287 . 2  |-  { x  |  x  e.  A }  =  A
42, 3sseqtri 3176 1  |-  { x  |  ph }  C_  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {cab 2151    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  ssab2  3226  abf  3452  intab  3853  opabss  4046  relopabi  4730  exse2  4978  mpoexw  6181  tfrlem8  6286  frecabex  6366  fiprc  6781  fival  6935  nqprxx  7487  ltnqex  7490  gtnqex  7491  recexprlemell  7563  recexprlemelu  7564  recexprlempr  7573  4sqlem1  12318  topnex  12726  2sqlem7  13597
  Copyright terms: Public domain W3C validator