Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abssi | Unicode version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 |
Ref | Expression |
---|---|
abssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 | |
2 | 1 | ss2abi 3219 | . 2 |
3 | abid2 2291 | . 2 | |
4 | 2, 3 | sseqtri 3181 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cab 2156 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssab2 3231 abf 3458 intab 3860 opabss 4053 relopabi 4737 exse2 4985 mpoexw 6192 tfrlem8 6297 frecabex 6377 fiprc 6793 fival 6947 nqprxx 7508 ltnqex 7511 gtnqex 7512 recexprlemell 7584 recexprlemelu 7585 recexprlempr 7594 4sqlem1 12340 topnex 12880 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |