![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abf | GIF version |
Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.) |
Ref | Expression |
---|---|
abf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
2 | 1 | pm2.21i 647 | . . 3 ⊢ (𝜑 → 𝑥 ∈ ∅) |
3 | 2 | abssi 3254 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ ∅ |
4 | ss0 3487 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ ∅ → {𝑥 ∣ 𝜑} = ∅) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2164 {cab 2179 ⊆ wss 3153 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 |
This theorem is referenced by: csbprc 3492 mpo0 5988 fi0 7034 |
Copyright terms: Public domain | W3C validator |