ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abf GIF version

Theorem abf 3535
Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21pm2.21i 649 . . 3 (𝜑𝑥 ∈ ∅)
32abssi 3299 . 2 {𝑥𝜑} ⊆ ∅
4 ss0 3532 . 2 ({𝑥𝜑} ⊆ ∅ → {𝑥𝜑} = ∅)
53, 4ax-mp 5 1 {𝑥𝜑} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wcel 2200  {cab 2215  wss 3197  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  csbprc  3537  mpo0  6073  fi0  7138
  Copyright terms: Public domain W3C validator