| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abf | GIF version | ||
| Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.) |
| Ref | Expression |
|---|---|
| abf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 1 | pm2.21i 647 | . . 3 ⊢ (𝜑 → 𝑥 ∈ ∅) |
| 3 | 2 | abssi 3272 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ ∅ |
| 4 | ss0 3505 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ ∅ → {𝑥 ∣ 𝜑} = ∅) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2177 {cab 2192 ⊆ wss 3170 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 |
| This theorem is referenced by: csbprc 3510 mpo0 6028 fi0 7092 |
| Copyright terms: Public domain | W3C validator |