| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abf | GIF version | ||
| Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.) |
| Ref | Expression |
|---|---|
| abf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 1 | pm2.21i 647 | . . 3 ⊢ (𝜑 → 𝑥 ∈ ∅) |
| 3 | 2 | abssi 3258 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ ∅ |
| 4 | ss0 3491 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ ∅ → {𝑥 ∣ 𝜑} = ∅) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2167 {cab 2182 ⊆ wss 3157 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 |
| This theorem is referenced by: csbprc 3496 mpo0 5992 fi0 7041 |
| Copyright terms: Public domain | W3C validator |