Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eq0rdv | Unicode version |
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) |
Ref | Expression |
---|---|
eq0rdv.1 |
Ref | Expression |
---|---|
eq0rdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdv.1 | . . . 4 | |
2 | 1 | pm2.21d 614 | . . 3 |
3 | 2 | ssrdv 3153 | . 2 |
4 | ss0 3454 | . 2 | |
5 | 3, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1348 wcel 2141 wss 3121 c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: exmid01 4182 dcextest 4563 nfvres 5527 map0b 6661 snon0 6909 snexxph 6923 fodju0 7119 fzdisj 9995 bldisj 13154 |
Copyright terms: Public domain | W3C validator |