| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0rdv | Unicode version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| eq0rdv.1 |
|
| Ref | Expression |
|---|---|
| eq0rdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 |
. . . 4
| |
| 2 | 1 | pm2.21d 620 |
. . 3
|
| 3 | 2 | ssrdv 3199 |
. 2
|
| 4 | ss0 3501 |
. 2
| |
| 5 | 3, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 |
| This theorem is referenced by: exmid01 4242 dcextest 4629 nfvres 5610 map0b 6774 snon0 7037 snexxph 7052 fodju0 7249 fzdisj 10174 bldisj 14873 |
| Copyright terms: Public domain | W3C validator |