ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0rdv Unicode version

Theorem eq0rdv 3458
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
Hypothesis
Ref Expression
eq0rdv.1  |-  ( ph  ->  -.  x  e.  A
)
Assertion
Ref Expression
eq0rdv  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem eq0rdv
StepHypRef Expression
1 eq0rdv.1 . . . 4  |-  ( ph  ->  -.  x  e.  A
)
21pm2.21d 614 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  (/) ) )
32ssrdv 3153 . 2  |-  ( ph  ->  A  C_  (/) )
4 ss0 3454 . 2  |-  ( A 
C_  (/)  ->  A  =  (/) )
53, 4syl 14 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141    C_ wss 3121   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  exmid01  4182  dcextest  4563  nfvres  5527  map0b  6661  snon0  6909  snexxph  6923  fodju0  7119  fzdisj  9995  bldisj  13154
  Copyright terms: Public domain W3C validator