ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0rdv Unicode version

Theorem eq0rdv 3495
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
Hypothesis
Ref Expression
eq0rdv.1  |-  ( ph  ->  -.  x  e.  A
)
Assertion
Ref Expression
eq0rdv  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem eq0rdv
StepHypRef Expression
1 eq0rdv.1 . . . 4  |-  ( ph  ->  -.  x  e.  A
)
21pm2.21d 620 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  (/) ) )
32ssrdv 3189 . 2  |-  ( ph  ->  A  C_  (/) )
4 ss0 3491 . 2  |-  ( A 
C_  (/)  ->  A  =  (/) )
53, 4syl 14 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  exmid01  4231  dcextest  4617  nfvres  5592  map0b  6746  snon0  7001  snexxph  7016  fodju0  7213  fzdisj  10127  bldisj  14637
  Copyright terms: Public domain W3C validator