ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed Unicode version

Theorem 2falsed 707
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1  |-  ( ph  ->  -.  ps )
2falsed.2  |-  ( ph  ->  -.  ch )
Assertion
Ref Expression
2falsed  |-  ( ph  ->  ( ps  <->  ch )
)

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3  |-  ( ph  ->  -.  ps )
21pm2.21d 622 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 2falsed.2 . . 3  |-  ( ph  ->  -.  ch )
43pm2.21d 622 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
52, 4impbid 129 1  |-  ( ph  ->  ( ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21ni  708  bianfd  954  abvor0dc  3515  nn0eln0  4711  nntri3  6641  fin0  7043  omp1eomlem  7257  ctssdccl  7274  ismkvnex  7318  xrlttri3  9989  nltpnft  10006  ngtmnft  10009  xrrebnd  10011  xltadd1  10068  xposdif  10074  xleaddadd  10079  xqltnle  10482  hashnncl  11012  zfz1isolemiso  11056  mod2eq1n2dvds  12385  m1exp1  12407  bitsmod  12462  pceq0  12840  2omap  16318
  Copyright terms: Public domain W3C validator