| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | Unicode version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 |
|
| 2falsed.2 |
|
| Ref | Expression |
|---|---|
| 2falsed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 |
. . 3
| |
| 2 | 1 | pm2.21d 622 |
. 2
|
| 3 | 2falsed.2 |
. . 3
| |
| 4 | 3 | pm2.21d 622 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 708 bianfd 954 abvor0dc 3515 nn0eln0 4711 nntri3 6641 fin0 7043 omp1eomlem 7257 ctssdccl 7274 ismkvnex 7318 xrlttri3 9989 nltpnft 10006 ngtmnft 10009 xrrebnd 10011 xltadd1 10068 xposdif 10074 xleaddadd 10079 xqltnle 10482 hashnncl 11012 zfz1isolemiso 11056 mod2eq1n2dvds 12385 m1exp1 12407 bitsmod 12462 pceq0 12840 2omap 16318 |
| Copyright terms: Public domain | W3C validator |