| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | Unicode version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 |
|
| 2falsed.2 |
|
| Ref | Expression |
|---|---|
| 2falsed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 |
. . 3
| |
| 2 | 1 | pm2.21d 620 |
. 2
|
| 3 | 2falsed.2 |
. . 3
| |
| 4 | 3 | pm2.21d 620 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 705 bianfd 951 abvor0dc 3492 nn0eln0 4686 nntri3 6606 fin0 7008 omp1eomlem 7222 ctssdccl 7239 ismkvnex 7283 xrlttri3 9954 nltpnft 9971 ngtmnft 9974 xrrebnd 9976 xltadd1 10033 xposdif 10039 xleaddadd 10044 xqltnle 10447 hashnncl 10977 zfz1isolemiso 11021 mod2eq1n2dvds 12305 m1exp1 12327 bitsmod 12382 pceq0 12760 2omap 16132 |
| Copyright terms: Public domain | W3C validator |