| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | Unicode version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 |
|
| 2falsed.2 |
|
| Ref | Expression |
|---|---|
| 2falsed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 |
. . 3
| |
| 2 | 1 | pm2.21d 620 |
. 2
|
| 3 | 2falsed.2 |
. . 3
| |
| 4 | 3 | pm2.21d 620 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 704 bianfd 950 abvor0dc 3483 nn0eln0 4667 nntri3 6582 fin0 6981 omp1eomlem 7195 ctssdccl 7212 ismkvnex 7256 xrlttri3 9918 nltpnft 9935 ngtmnft 9938 xrrebnd 9940 xltadd1 9997 xposdif 10003 xleaddadd 10008 xqltnle 10408 hashnncl 10938 zfz1isolemiso 10982 mod2eq1n2dvds 12161 m1exp1 12183 bitsmod 12238 pceq0 12616 2omap 15894 |
| Copyright terms: Public domain | W3C validator |