| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | Unicode version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 |
|
| 2falsed.2 |
|
| Ref | Expression |
|---|---|
| 2falsed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 |
. . 3
| |
| 2 | 1 | pm2.21d 620 |
. 2
|
| 3 | 2falsed.2 |
. . 3
| |
| 4 | 3 | pm2.21d 620 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 705 bianfd 951 abvor0dc 3484 nn0eln0 4668 nntri3 6583 fin0 6982 omp1eomlem 7196 ctssdccl 7213 ismkvnex 7257 xrlttri3 9919 nltpnft 9936 ngtmnft 9939 xrrebnd 9941 xltadd1 9998 xposdif 10004 xleaddadd 10009 xqltnle 10410 hashnncl 10940 zfz1isolemiso 10984 mod2eq1n2dvds 12190 m1exp1 12212 bitsmod 12267 pceq0 12645 2omap 15932 |
| Copyright terms: Public domain | W3C validator |