| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | Unicode version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 |
|
| 2falsed.2 |
|
| Ref | Expression |
|---|---|
| 2falsed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 |
. . 3
| |
| 2 | 1 | pm2.21d 620 |
. 2
|
| 3 | 2falsed.2 |
. . 3
| |
| 4 | 3 | pm2.21d 620 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 704 bianfd 950 abvor0dc 3474 nn0eln0 4656 nntri3 6555 fin0 6946 omp1eomlem 7160 ctssdccl 7177 ismkvnex 7221 xrlttri3 9872 nltpnft 9889 ngtmnft 9892 xrrebnd 9894 xltadd1 9951 xposdif 9957 xleaddadd 9962 xqltnle 10357 hashnncl 10887 zfz1isolemiso 10931 mod2eq1n2dvds 12044 m1exp1 12066 pceq0 12491 |
| Copyright terms: Public domain | W3C validator |