| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abvor0dc | GIF version | ||
| Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
| Ref | Expression |
|---|---|
| abvor0dc | ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | id 19 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
| 3 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ V) |
| 5 | 2, 4 | 2thd 175 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ 𝑥 ∈ V)) |
| 6 | 5 | abbi1dv 2326 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
| 7 | id 19 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 8 | noel 3468 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝑥 ∈ ∅) |
| 10 | 7, 9 | 2falsed 704 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 ↔ 𝑥 ∈ ∅)) |
| 11 | 10 | abbi1dv 2326 | . . 3 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| 12 | 6, 11 | orim12i 761 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| 13 | 1, 12 | sylbi 121 | 1 ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-nul 3465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |