| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abvor0dc | GIF version | ||
| Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
| Ref | Expression |
|---|---|
| abvor0dc | ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | id 19 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
| 3 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ V) |
| 5 | 2, 4 | 2thd 175 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ 𝑥 ∈ V)) |
| 6 | 5 | abbi1dv 2349 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
| 7 | id 19 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 8 | noel 3495 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝑥 ∈ ∅) |
| 10 | 7, 9 | 2falsed 707 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 ↔ 𝑥 ∈ ∅)) |
| 11 | 10 | abbi1dv 2349 | . . 3 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| 12 | 6, 11 | orim12i 764 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| 13 | 1, 12 | sylbi 121 | 1 ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |