| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abvor0dc | GIF version | ||
| Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
| Ref | Expression |
|---|---|
| abvor0dc | ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | id 19 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ V) |
| 5 | 2, 4 | 2thd 175 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ 𝑥 ∈ V)) |
| 6 | 5 | abbi1dv 2316 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
| 7 | id 19 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
| 8 | noel 3454 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝑥 ∈ ∅) |
| 10 | 7, 9 | 2falsed 703 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 ↔ 𝑥 ∈ ∅)) |
| 11 | 10 | abbi1dv 2316 | . . 3 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| 12 | 6, 11 | orim12i 760 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| 13 | 1, 12 | sylbi 121 | 1 ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |