ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abvor0dc GIF version

Theorem abvor0dc 3488
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abvor0dc (DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Distinct variable group:   𝜑,𝑥

Proof of Theorem abvor0dc
StepHypRef Expression
1 df-dc 837 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 id 19 . . . . 5 (𝜑𝜑)
3 vex 2776 . . . . . 6 𝑥 ∈ V
43a1i 9 . . . . 5 (𝜑𝑥 ∈ V)
52, 42thd 175 . . . 4 (𝜑 → (𝜑𝑥 ∈ V))
65abbi1dv 2326 . . 3 (𝜑 → {𝑥𝜑} = V)
7 id 19 . . . . 5 𝜑 → ¬ 𝜑)
8 noel 3468 . . . . . 6 ¬ 𝑥 ∈ ∅
98a1i 9 . . . . 5 𝜑 → ¬ 𝑥 ∈ ∅)
107, 92falsed 704 . . . 4 𝜑 → (𝜑𝑥 ∈ ∅))
1110abbi1dv 2326 . . 3 𝜑 → {𝑥𝜑} = ∅)
126, 11orim12i 761 . 2 ((𝜑 ∨ ¬ 𝜑) → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
131, 12sylbi 121 1 (DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-nul 3465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator