ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abvor0dc GIF version

Theorem abvor0dc 3438
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abvor0dc (DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Distinct variable group:   𝜑,𝑥

Proof of Theorem abvor0dc
StepHypRef Expression
1 df-dc 830 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 id 19 . . . . 5 (𝜑𝜑)
3 vex 2733 . . . . . 6 𝑥 ∈ V
43a1i 9 . . . . 5 (𝜑𝑥 ∈ V)
52, 42thd 174 . . . 4 (𝜑 → (𝜑𝑥 ∈ V))
65abbi1dv 2290 . . 3 (𝜑 → {𝑥𝜑} = V)
7 id 19 . . . . 5 𝜑 → ¬ 𝜑)
8 noel 3418 . . . . . 6 ¬ 𝑥 ∈ ∅
98a1i 9 . . . . 5 𝜑 → ¬ 𝑥 ∈ ∅)
107, 92falsed 697 . . . 4 𝜑 → (𝜑𝑥 ∈ ∅))
1110abbi1dv 2290 . . 3 𝜑 → {𝑥𝜑} = ∅)
126, 11orim12i 754 . 2 ((𝜑 ∨ ¬ 𝜑) → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
131, 12sylbi 120 1 (DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator