Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abvor0dc | GIF version |
Description: The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.) |
Ref | Expression |
---|---|
abvor0dc | ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 830 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
2 | id 19 | . . . . 5 ⊢ (𝜑 → 𝜑) | |
3 | vex 2733 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ V) |
5 | 2, 4 | 2thd 174 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ 𝑥 ∈ V)) |
6 | 5 | abbi1dv 2290 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
7 | id 19 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝜑) | |
8 | noel 3418 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
9 | 8 | a1i 9 | . . . . 5 ⊢ (¬ 𝜑 → ¬ 𝑥 ∈ ∅) |
10 | 7, 9 | 2falsed 697 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 ↔ 𝑥 ∈ ∅)) |
11 | 10 | abbi1dv 2290 | . . 3 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
12 | 6, 11 | orim12i 754 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
13 | 1, 12 | sylbi 120 | 1 ⊢ (DECID 𝜑 → ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |