ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqex Unicode version

Theorem ceqex 2853
Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
Assertion
Ref Expression
ceqex  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ceqex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 19.8a 1578 . . 3  |-  ( x  =  A  ->  E. x  x  =  A )
2 isset 2732 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2sylibr 133 . 2  |-  ( x  =  A  ->  A  e.  _V )
4 eqeq2 2175 . . . 4  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
54anbi1d 461 . . . . . 6  |-  ( y  =  A  ->  (
( x  =  y  /\  ph )  <->  ( x  =  A  /\  ph )
) )
65exbidv 1813 . . . . 5  |-  ( y  =  A  ->  ( E. x ( x  =  y  /\  ph )  <->  E. x ( x  =  A  /\  ph )
) )
76bibi2d 231 . . . 4  |-  ( y  =  A  ->  (
( ph  <->  E. x ( x  =  y  /\  ph ) )  <->  ( ph  <->  E. x ( x  =  A  /\  ph )
) ) )
84, 7imbi12d 233 . . 3  |-  ( y  =  A  ->  (
( x  =  y  ->  ( ph  <->  E. x
( x  =  y  /\  ph ) ) )  <->  ( x  =  A  ->  ( ph  <->  E. x ( x  =  A  /\  ph )
) ) ) )
9 19.8a 1578 . . . . 5  |-  ( ( x  =  y  /\  ph )  ->  E. x
( x  =  y  /\  ph ) )
109ex 114 . . . 4  |-  ( x  =  y  ->  ( ph  ->  E. x ( x  =  y  /\  ph ) ) )
11 vex 2729 . . . . . 6  |-  y  e. 
_V
1211alexeq 2852 . . . . 5  |-  ( A. x ( x  =  y  ->  ph )  <->  E. x
( x  =  y  /\  ph ) )
13 sp 1499 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
1413com12 30 . . . . 5  |-  ( x  =  y  ->  ( A. x ( x  =  y  ->  ph )  ->  ph ) )
1512, 14syl5bir 152 . . . 4  |-  ( x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  ph ) )
1610, 15impbid 128 . . 3  |-  ( x  =  y  ->  ( ph 
<->  E. x ( x  =  y  /\  ph ) ) )
178, 16vtoclg 2786 . 2  |-  ( A  e.  _V  ->  (
x  =  A  -> 
( ph  <->  E. x ( x  =  A  /\  ph ) ) ) )
183, 17mpcom 36 1  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  ceqsexg  2854  sbc6g  2975
  Copyright terms: Public domain W3C validator