| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ancomsd | Unicode version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| ancomsd.1 | 
 | 
| Ref | Expression | 
|---|---|
| ancomsd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 266 | 
. 2
 | |
| 2 | ancomsd.1 | 
. 2
 | |
| 3 | 1, 2 | biimtrid 152 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sylan2d 294 mpand 429 anabsi6 580 ralxfrd 4497 rexxfrd 4498 poirr2 5062 smoel 6358 genprndl 7588 genprndu 7589 addcanprlemu 7682 leltadd 8474 lemul12b 8888 lbzbi 9690 dvdssub2 12000 odzdvds 12414 | 
| Copyright terms: Public domain | W3C validator |