ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomsd Unicode version

Theorem ancomsd 269
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.)
Hypothesis
Ref Expression
ancomsd.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
ancomsd  |-  ( ph  ->  ( ( ch  /\  ps )  ->  th )
)

Proof of Theorem ancomsd
StepHypRef Expression
1 ancom 266 . 2  |-  ( ( ch  /\  ps )  <->  ( ps  /\  ch )
)
2 ancomsd.1 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
31, 2biimtrid 152 1  |-  ( ph  ->  ( ( ch  /\  ps )  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylan2d  294  mpand  429  anabsi6  580  ralxfrd  4508  rexxfrd  4509  poirr2  5074  smoel  6385  genprndl  7633  genprndu  7634  addcanprlemu  7727  leltadd  8519  lemul12b  8933  lbzbi  9736  dvdssub2  12088  odzdvds  12510
  Copyright terms: Public domain W3C validator