ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomsd Unicode version

Theorem ancomsd 267
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.)
Hypothesis
Ref Expression
ancomsd.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
ancomsd  |-  ( ph  ->  ( ( ch  /\  ps )  ->  th )
)

Proof of Theorem ancomsd
StepHypRef Expression
1 ancom 264 . 2  |-  ( ( ch  /\  ps )  <->  ( ps  /\  ch )
)
2 ancomsd.1 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
31, 2syl5bi 151 1  |-  ( ph  ->  ( ( ch  /\  ps )  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylan2d  292  mpand  426  anabsi6  570  ralxfrd  4437  rexxfrd  4438  poirr2  4993  smoel  6262  genprndl  7456  genprndu  7457  addcanprlemu  7550  leltadd  8339  lemul12b  8750  lbzbi  9548  dvdssub2  11769  odzdvds  12171
  Copyright terms: Public domain W3C validator