ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzdvds Unicode version

Theorem odzdvds 12414
Description: The only powers of  A that are congruent to  1 are the multiples of the order of  A. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzdvds  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)

Proof of Theorem odzdvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0z 9346 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  ZZ )
2 zq 9700 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  QQ )
31, 2syl 14 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  QQ )
43adantl 277 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  QQ )
5 odzcl 12412 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  NN )
65adantr 276 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN )
7 nnq 9707 . . . . . . . . 9  |-  ( ( ( odZ `  N ) `  A
)  e.  NN  ->  ( ( odZ `  N ) `  A
)  e.  QQ )
86, 7syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  QQ )
96nngt0d 9034 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  ( ( odZ `  N ) `
 A ) )
10 modqlt 10425 . . . . . . . 8  |-  ( ( K  e.  QQ  /\  ( ( odZ `  N ) `  A
)  e.  QQ  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
114, 8, 9, 10syl3anc 1249 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
121adantl 277 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  ZZ )
1312, 6zmodcld 10437 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN0 )
1413nn0zd 9446 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  ZZ )
156nnzd 9447 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  ZZ )
16 zltnle 9372 . . . . . . . 8  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  ZZ )  ->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  < 
( ( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
1714, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
1811, 17mpbid 147 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( ( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
19 1zzd 9353 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  ->  1  e.  ZZ )
20 nnuz 9637 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
2120rabeqi 2756 . . . . . . . . . 10  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =  {
n  e.  ( ZZ>= ` 
1 )  |  N  ||  ( ( A ^
n )  -  1 ) }
22 oveq2 5930 . . . . . . . . . . . . . . 15  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( A ^ n )  =  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )
2322oveq1d 5937 . . . . . . . . . . . . . 14  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) )
2423breq2d 4045 . . . . . . . . . . . . 13  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
2524elrab 2920 . . . . . . . . . . . 12  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) ) )
2625biimpri 133 . . . . . . . . . . 11  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) )  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
2726adantl 277 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
28 simp1 999 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  NN )
2928ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  N  e.  NN )
30 simp2 1000 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  A  e.  ZZ )
3130ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  A  e.  ZZ )
32 elfznn 10129 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( K  mod  (
( odZ `  N ) `  A
) ) )  ->  n  e.  NN )
3332nnnn0d 9302 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... ( K  mod  (
( odZ `  N ) `  A
) ) )  ->  n  e.  NN0 )
3433adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  n  e.  NN0 )
35 zexpcl 10646 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  n  e.  NN0 )  -> 
( A ^ n
)  e.  ZZ )
3631, 34, 35syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  ( A ^ n )  e.  ZZ )
37 peano2zm 9364 . . . . . . . . . . . 12  |-  ( ( A ^ n )  e.  ZZ  ->  (
( A ^ n
)  -  1 )  e.  ZZ )
3836, 37syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  ( ( A ^ n )  - 
1 )  e.  ZZ )
39 dvdsdc 11963 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( A ^
n )  -  1 )  e.  ZZ )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
4029, 38, 39syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  -> DECID  N  ||  ( ( A ^ n )  -  1 ) )
4119, 21, 27, 40infssuzledc 10324 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  -> inf ( {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
4241ex 115 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
4342ancomsd 269 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
44 odzval 12410 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
4544adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
4645breq1d 4043 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  <_  ( K  mod  ( ( odZ `  N ) `  A ) )  <-> inf ( {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
4743, 46sylibrd 169 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  ->  (
( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
4818, 47mtod 664 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN ) )
49 imnan 691 . . . . 5  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) 
<->  -.  ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN ) )
5048, 49sylibr 134 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) )
51 elnn0 9251 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  \/  ( K  mod  ( ( odZ `  N ) `  A ) )  =  0 ) )
5213, 51sylib 122 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  e.  NN  \/  ( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
5352ord 725 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( -.  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
5450, 53syld 45 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
55 simpl1 1002 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  NN )
5655nnzd 9447 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  ZZ )
57 dvds0 11971 . . . . . 6  |-  ( N  e.  ZZ  ->  N  ||  0 )
5856, 57syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  0 )
59 simpl2 1003 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  ZZ )
6059zcnd 9449 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  CC )
6160exp0d 10759 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
6261oveq1d 5937 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  ( 1  -  1 ) )
63 1m1e0 9059 . . . . . 6  |-  ( 1  -  1 )  =  0
6462, 63eqtrdi 2245 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  0 )
6558, 64breqtrrd 4061 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ 0 )  - 
1 ) )
66 oveq2 5930 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( A ^
0 ) )
6766oveq1d 5937 . . . . 5  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  =  ( ( A ^ 0 )  -  1 ) )
6867breq2d 4045 . . . 4  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  N  ||  (
( A ^ 0 )  -  1 ) ) )
6965, 68syl5ibrcom 157 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  =  0  ->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
7054, 69impbid 129 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
716nnnn0d 9302 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN0 )
72 znq 9698 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN )  ->  ( K  / 
( ( odZ `  N ) `  A
) )  e.  QQ )
7312, 6, 72syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  /  (
( odZ `  N ) `  A
) )  e.  QQ )
74 nn0ge0 9274 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  0  <_  K )
7574adantl 277 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  K )
76 nn0re 9258 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  K  e.  RR )
7776adantl 277 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  RR )
786nnred 9003 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR )
79 ge0div 8898 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
8077, 78, 9, 79syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
8175, 80mpbid 147 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )
82 flqge0nn0 10383 . . . . . . . . . 10  |-  ( ( ( K  /  (
( odZ `  N ) `  A
) )  e.  QQ  /\  0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )  ->  ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) )  e. 
NN0 )
8373, 81, 82syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  NN0 )
8471, 83nn0mulcld 9307 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )
85 zexpcl 10646 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
8659, 84, 85syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
87 zq 9700 . . . . . . 7  |-  ( ( A ^ ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ  ->  ( A ^ ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  QQ )
8886, 87syl 14 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  QQ )
89 1z 9352 . . . . . . 7  |-  1  e.  ZZ
90 zq 9700 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
9189, 90mp1i 10 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  QQ )
92 zexpcl 10646 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0 )  ->  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
9359, 13, 92syl2anc 411 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
94 nnq 9707 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
9555, 94syl 14 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  QQ )
9655nngt0d 9034 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  N )
9760, 83, 71expmuld 10768 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  =  ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )
9897oveq1d 5937 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  mod  N ) )
99 zexpcl 10646 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN0 )  ->  ( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
10059, 71, 99syl2anc 411 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
101 1zzd 9353 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  ZZ )
102 odzid 12413 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( ( odZ `  N ) `  A
) )  -  1 ) )
103102adantr 276 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
104 moddvds 11964 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A ^ ( ( odZ `  N
) `  A )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
10555, 100, 101, 104syl3anc 1249 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
106103, 105mpbird 167 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( odZ `  N ) `  A
) )  mod  N
)  =  ( 1  mod  N ) )
107100, 101, 83, 95, 96, 106modqexp 10758 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
10873flqcld 10367 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
109 1exp 10660 . . . . . . . . 9  |-  ( ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
110108, 109syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1 ^ ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
111110oveq1d 5937 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1 ^ ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
11298, 107, 1113eqtrd 2233 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
11388, 91, 93, 95, 96, 112modqmul1 10469 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
11460, 13, 84expaddd 10767 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) ) )
115 modqval 10416 . . . . . . . . . . 11  |-  ( ( K  e.  QQ  /\  ( ( odZ `  N ) `  A
)  e.  QQ  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
1164, 8, 9, 115syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
117116oveq2d 5938 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  -  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) ) )
11884nn0cnd 9304 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  CC )
11977recnd 8055 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  CC )
120118, 119pncan3d 8340 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  -  ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) ) )  =  K )
121117, 120eqtrd 2229 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  K )
122121oveq2d 5938 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
123114, 122eqtr3d 2231 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
124123oveq1d 5937 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( A ^ K )  mod  N
) )
12593zcnd 9449 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  CC )
126125mulid2d 8045 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) ) )
127126oveq1d 5937 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N ) )
128113, 124, 1273eqtr3d 2237 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^ K )  mod  N
)  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  mod  N ) )
129128eqeq1d 2205 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N ) ) )
130 zexpcl 10646 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
13159, 130sylancom 420 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
132 moddvds 11964 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ K )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^ K )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ K
)  -  1 ) ) )
13355, 131, 101, 132syl3anc 1249 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ K )  - 
1 ) ) )
134 moddvds 11964 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
13555, 93, 101, 134syl3anc 1249 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
136129, 133, 1353bitr3d 218 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
137 dvdsval3 11956 . . 3  |-  ( ( ( ( odZ `  N ) `  A
)  e.  NN  /\  K  e.  ZZ )  ->  ( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
1386, 12, 137syl2anc 411 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
13970, 136, 1383bitr4d 220 1  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   class class class wbr 4033   ` cfv 5258  (class class class)co 5922  infcinf 7049   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   NNcn 8990   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   QQcq 9693   ...cfz 10083   |_cfl 10358    mod cmo 10414   ^cexp 10630    || cdvds 11952    gcd cgcd 12120   odZcodz 12376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-odz 12378  df-phi 12379
This theorem is referenced by:  odzphi  12415  pockthlem  12525
  Copyright terms: Public domain W3C validator