ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzdvds Unicode version

Theorem odzdvds 12199
Description: The only powers of  A that are congruent to  1 are the multiples of the order of  A. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzdvds  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)

Proof of Theorem odzdvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0z 9232 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  ZZ )
2 zq 9585 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  QQ )
31, 2syl 14 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  QQ )
43adantl 275 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  QQ )
5 odzcl 12197 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  NN )
65adantr 274 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN )
7 nnq 9592 . . . . . . . . 9  |-  ( ( ( odZ `  N ) `  A
)  e.  NN  ->  ( ( odZ `  N ) `  A
)  e.  QQ )
86, 7syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  QQ )
96nngt0d 8922 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  ( ( odZ `  N ) `
 A ) )
10 modqlt 10289 . . . . . . . 8  |-  ( ( K  e.  QQ  /\  ( ( odZ `  N ) `  A
)  e.  QQ  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
114, 8, 9, 10syl3anc 1233 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
121adantl 275 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  ZZ )
1312, 6zmodcld 10301 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN0 )
1413nn0zd 9332 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  ZZ )
156nnzd 9333 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  ZZ )
16 zltnle 9258 . . . . . . . 8  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  ZZ )  ->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  < 
( ( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
1714, 15, 16syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
1811, 17mpbid 146 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( ( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
19 1zzd 9239 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  ->  1  e.  ZZ )
20 nnuz 9522 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
2120rabeqi 2723 . . . . . . . . . 10  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =  {
n  e.  ( ZZ>= ` 
1 )  |  N  ||  ( ( A ^
n )  -  1 ) }
22 oveq2 5861 . . . . . . . . . . . . . . 15  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( A ^ n )  =  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )
2322oveq1d 5868 . . . . . . . . . . . . . 14  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) )
2423breq2d 4001 . . . . . . . . . . . . 13  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
2524elrab 2886 . . . . . . . . . . . 12  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) ) )
2625biimpri 132 . . . . . . . . . . 11  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) )  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
2726adantl 275 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
28 simp1 992 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  NN )
2928ad3antrrr 489 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  N  e.  NN )
30 simp2 993 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  A  e.  ZZ )
3130ad3antrrr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  A  e.  ZZ )
32 elfznn 10010 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( K  mod  (
( odZ `  N ) `  A
) ) )  ->  n  e.  NN )
3332nnnn0d 9188 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... ( K  mod  (
( odZ `  N ) `  A
) ) )  ->  n  e.  NN0 )
3433adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  n  e.  NN0 )
35 zexpcl 10491 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  n  e.  NN0 )  -> 
( A ^ n
)  e.  ZZ )
3631, 34, 35syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  ( A ^ n )  e.  ZZ )
37 peano2zm 9250 . . . . . . . . . . . 12  |-  ( ( A ^ n )  e.  ZZ  ->  (
( A ^ n
)  -  1 )  e.  ZZ )
3836, 37syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  ->  ( ( A ^ n )  - 
1 )  e.  ZZ )
39 dvdsdc 11760 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( A ^
n )  -  1 )  e.  ZZ )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
4029, 38, 39syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  /\  n  e.  ( 1 ... ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  -> DECID  N  ||  ( ( A ^ n )  -  1 ) )
4119, 21, 27, 40infssuzledc 11905 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  /\  (
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )  -> inf ( {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
4241ex 114 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
4342ancomsd 267 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
44 odzval 12195 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
4544adantr 274 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
4645breq1d 3999 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  <_  ( K  mod  ( ( odZ `  N ) `  A ) )  <-> inf ( {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
4743, 46sylibrd 168 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  ->  (
( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
4818, 47mtod 658 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN ) )
49 imnan 685 . . . . 5  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) 
<->  -.  ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN ) )
5048, 49sylibr 133 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) )
51 elnn0 9137 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  \/  ( K  mod  ( ( odZ `  N ) `  A ) )  =  0 ) )
5213, 51sylib 121 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  e.  NN  \/  ( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
5352ord 719 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( -.  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
5450, 53syld 45 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
55 simpl1 995 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  NN )
5655nnzd 9333 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  ZZ )
57 dvds0 11768 . . . . . 6  |-  ( N  e.  ZZ  ->  N  ||  0 )
5856, 57syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  0 )
59 simpl2 996 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  ZZ )
6059zcnd 9335 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  CC )
6160exp0d 10603 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
6261oveq1d 5868 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  ( 1  -  1 ) )
63 1m1e0 8947 . . . . . 6  |-  ( 1  -  1 )  =  0
6462, 63eqtrdi 2219 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  0 )
6558, 64breqtrrd 4017 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ 0 )  - 
1 ) )
66 oveq2 5861 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( A ^
0 ) )
6766oveq1d 5868 . . . . 5  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  =  ( ( A ^ 0 )  -  1 ) )
6867breq2d 4001 . . . 4  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  N  ||  (
( A ^ 0 )  -  1 ) ) )
6965, 68syl5ibrcom 156 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  =  0  ->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
7054, 69impbid 128 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
716nnnn0d 9188 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN0 )
72 znq 9583 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN )  ->  ( K  / 
( ( odZ `  N ) `  A
) )  e.  QQ )
7312, 6, 72syl2anc 409 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  /  (
( odZ `  N ) `  A
) )  e.  QQ )
74 nn0ge0 9160 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  0  <_  K )
7574adantl 275 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  K )
76 nn0re 9144 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  K  e.  RR )
7776adantl 275 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  RR )
786nnred 8891 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR )
79 ge0div 8787 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
8077, 78, 9, 79syl3anc 1233 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
8175, 80mpbid 146 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )
82 flqge0nn0 10249 . . . . . . . . . 10  |-  ( ( ( K  /  (
( odZ `  N ) `  A
) )  e.  QQ  /\  0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )  ->  ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) )  e. 
NN0 )
8373, 81, 82syl2anc 409 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  NN0 )
8471, 83nn0mulcld 9193 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )
85 zexpcl 10491 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
8659, 84, 85syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
87 zq 9585 . . . . . . 7  |-  ( ( A ^ ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ  ->  ( A ^ ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  QQ )
8886, 87syl 14 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  QQ )
89 1z 9238 . . . . . . 7  |-  1  e.  ZZ
90 zq 9585 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
9189, 90mp1i 10 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  QQ )
92 zexpcl 10491 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0 )  ->  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
9359, 13, 92syl2anc 409 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
94 nnq 9592 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
9555, 94syl 14 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  QQ )
9655nngt0d 8922 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  N )
9760, 83, 71expmuld 10612 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  =  ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )
9897oveq1d 5868 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  mod  N ) )
99 zexpcl 10491 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN0 )  ->  ( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
10059, 71, 99syl2anc 409 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
101 1zzd 9239 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  ZZ )
102 odzid 12198 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( ( odZ `  N ) `  A
) )  -  1 ) )
103102adantr 274 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
104 moddvds 11761 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A ^ ( ( odZ `  N
) `  A )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
10555, 100, 101, 104syl3anc 1233 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
106103, 105mpbird 166 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( odZ `  N ) `  A
) )  mod  N
)  =  ( 1  mod  N ) )
107100, 101, 83, 95, 96, 106modqexp 10602 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
10873flqcld 10233 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
109 1exp 10505 . . . . . . . . 9  |-  ( ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
110108, 109syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1 ^ ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
111110oveq1d 5868 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1 ^ ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
11298, 107, 1113eqtrd 2207 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
11388, 91, 93, 95, 96, 112modqmul1 10333 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
11460, 13, 84expaddd 10611 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) ) )
115 modqval 10280 . . . . . . . . . . 11  |-  ( ( K  e.  QQ  /\  ( ( odZ `  N ) `  A
)  e.  QQ  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
1164, 8, 9, 115syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
117116oveq2d 5869 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  -  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) ) )
11884nn0cnd 9190 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  CC )
11977recnd 7948 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  CC )
120118, 119pncan3d 8233 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  -  ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) ) )  =  K )
121117, 120eqtrd 2203 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  K )
122121oveq2d 5869 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
123114, 122eqtr3d 2205 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
124123oveq1d 5868 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( A ^ K )  mod  N
) )
12593zcnd 9335 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  CC )
126125mulid2d 7938 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) ) )
127126oveq1d 5868 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N ) )
128113, 124, 1273eqtr3d 2211 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^ K )  mod  N
)  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  mod  N ) )
129128eqeq1d 2179 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N ) ) )
130 zexpcl 10491 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
13159, 130sylancom 418 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
132 moddvds 11761 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ K )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^ K )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ K
)  -  1 ) ) )
13355, 131, 101, 132syl3anc 1233 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ K )  - 
1 ) ) )
134 moddvds 11761 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
13555, 93, 101, 134syl3anc 1233 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
136129, 133, 1353bitr3d 217 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
137 dvdsval3 11753 . . 3  |-  ( ( ( ( odZ `  N ) `  A
)  e.  NN  /\  K  e.  ZZ )  ->  ( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
1386, 12, 137syl2anc 409 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
13970, 136, 1383bitr4d 219 1  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989   ` cfv 5198  (class class class)co 5853  infcinf 6960   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   QQcq 9578   ...cfz 9965   |_cfl 10224    mod cmo 10278   ^cexp 10475    || cdvds 11749    gcd cgcd 11897   odZcodz 12162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-odz 12164  df-phi 12165
This theorem is referenced by:  odzphi  12200  pockthlem  12308
  Copyright terms: Public domain W3C validator