ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul12b Unicode version

Theorem lemul12b 8831
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12b  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )

Proof of Theorem lemul12b
StepHypRef Expression
1 lemul2a 8829 . . . . . . . . 9  |-  ( ( ( C  e.  RR  /\  D  e.  RR  /\  ( A  e.  RR  /\  0  <_  A )
)  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( A  x.  D )
)
21ex 115 . . . . . . . 8  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( C  <_  D  ->  ( A  x.  C
)  <_  ( A  x.  D ) ) )
323comr 1212 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  C  e.  RR  /\  D  e.  RR )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D )
) )
433expb 1205 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D )
) )
54adantrrr 487 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
) )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D
) ) )
65adantlr 477 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D )
) )
7 lemul1a 8828 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
)  /\  A  <_  B )  ->  ( A  x.  D )  <_  ( B  x.  D )
)
87ex 115 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) )  -> 
( A  <_  B  ->  ( A  x.  D
)  <_  ( B  x.  D ) ) )
983expa 1204 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  RR  /\  0  <_  D ) )  -> 
( A  <_  B  ->  ( A  x.  D
)  <_  ( B  x.  D ) ) )
109adantllr 481 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( D  e.  RR  /\  0  <_  D ) )  -> 
( A  <_  B  ->  ( A  x.  D
)  <_  ( B  x.  D ) ) )
1110adantrl 478 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( A  <_  B  ->  ( A  x.  D )  <_  ( B  x.  D )
) )
126, 11anim12d 335 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( C  <_  D  /\  A  <_  B )  ->  (
( A  x.  C
)  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) ) ) )
1312ancomsd 269 . 2  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  (
( A  x.  C
)  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) ) ) )
14 remulcl 7952 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
1514adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
1615ad2ant2r 509 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( A  x.  C )  e.  RR )
17 remulcl 7952 . . . . 5  |-  ( ( A  e.  RR  /\  D  e.  RR )  ->  ( A  x.  D
)  e.  RR )
1817ad2ant2r 509 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( D  e.  RR  /\  0  <_  D )
)  ->  ( A  x.  D )  e.  RR )
1918ad2ant2rl 511 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( A  x.  D )  e.  RR )
20 remulcl 7952 . . . . 5  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B  x.  D
)  e.  RR )
2120adantrr 479 . . . 4  |-  ( ( B  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
)  ->  ( B  x.  D )  e.  RR )
2221ad2ant2l 508 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( B  x.  D )  e.  RR )
23 letr 8053 . . 3  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( A  x.  D
)  e.  RR  /\  ( B  x.  D
)  e.  RR )  ->  ( ( ( A  x.  C )  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
2416, 19, 22, 23syl3anc 1248 . 2  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( ( A  x.  C )  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
2513, 24syld 45 1  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   RRcr 7823   0cc0 7824    x. cmul 7829    <_ cle 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552
This theorem is referenced by:  lemul12a  8832  lemul12bd  8913
  Copyright terms: Public domain W3C validator