| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | Unicode version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 |
|
| mpand.2 |
|
| Ref | Expression |
|---|---|
| mpand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 |
. 2
| |
| 2 | mpand.2 |
. . 3
| |
| 3 | 2 | ancomsd 269 |
. 2
|
| 4 | 1, 3 | mpan2d 428 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2883 ovig 6080 prcdnql 7617 prcunqu 7618 p1le 8942 nnge1 9079 zltp1le 9447 gtndiv 9488 uzss 9689 addlelt 9910 xrre2 9963 xrre3 9964 zltaddlt1le 10149 zsupcllemstep 10394 modfzo0difsn 10562 seqf1oglem1 10686 leexp2r 10760 expnlbnd2 10832 facavg 10913 wrdred1hash 11059 caubnd2 11503 maxleast 11599 mulcn2 11698 cn1lem 11700 climsqz 11721 climsqz2 11722 climcvg1nlem 11735 fsumabs 11851 cvgratnnlemnexp 11910 cvgratnnlemmn 11911 bitsfzolem 12340 bitsfzo 12341 gcdzeq 12418 algcvgblem 12446 algcvga 12448 lcmdvdsb 12481 coprm 12541 pclemub 12685 bldisj 14948 xblm 14964 metss2lem 15044 bdxmet 15048 limccoap 15225 lgsne0 15590 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |