| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpand | Unicode version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| mpand.1 | 
 | 
| mpand.2 | 
 | 
| Ref | Expression | 
|---|---|
| mpand | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpand.1 | 
. 2
 | |
| 2 | mpand.2 | 
. . 3
 | |
| 3 | 2 | ancomsd 269 | 
. 2
 | 
| 4 | 1, 3 | mpan2d 428 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2870 ovig 6044 prcdnql 7551 prcunqu 7552 p1le 8876 nnge1 9013 zltp1le 9380 gtndiv 9421 uzss 9622 addlelt 9843 xrre2 9896 xrre3 9897 zltaddlt1le 10082 zsupcllemstep 10319 modfzo0difsn 10487 seqf1oglem1 10611 leexp2r 10685 expnlbnd2 10757 facavg 10838 wrdred1hash 10978 caubnd2 11282 maxleast 11378 mulcn2 11477 cn1lem 11479 climsqz 11500 climsqz2 11501 climcvg1nlem 11514 fsumabs 11630 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 bitsfzolem 12118 bitsfzo 12119 gcdzeq 12189 algcvgblem 12217 algcvga 12219 lcmdvdsb 12252 coprm 12312 pclemub 12456 bldisj 14637 xblm 14653 metss2lem 14733 bdxmet 14737 limccoap 14914 lgsne0 15279 gausslemma2dlem1a 15299 | 
| Copyright terms: Public domain | W3C validator |