| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | Unicode version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 |
|
| mpand.2 |
|
| Ref | Expression |
|---|---|
| mpand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 |
. 2
| |
| 2 | mpand.2 |
. . 3
| |
| 3 | 2 | ancomsd 269 |
. 2
|
| 4 | 1, 3 | mpan2d 428 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2878 ovig 6057 prcdnql 7579 prcunqu 7580 p1le 8904 nnge1 9041 zltp1le 9409 gtndiv 9450 uzss 9651 addlelt 9872 xrre2 9925 xrre3 9926 zltaddlt1le 10111 zsupcllemstep 10353 modfzo0difsn 10521 seqf1oglem1 10645 leexp2r 10719 expnlbnd2 10791 facavg 10872 wrdred1hash 11012 caubnd2 11347 maxleast 11443 mulcn2 11542 cn1lem 11544 climsqz 11565 climsqz2 11566 climcvg1nlem 11579 fsumabs 11695 cvgratnnlemnexp 11754 cvgratnnlemmn 11755 bitsfzolem 12184 bitsfzo 12185 gcdzeq 12262 algcvgblem 12290 algcvga 12292 lcmdvdsb 12325 coprm 12385 pclemub 12529 bldisj 14791 xblm 14807 metss2lem 14887 bdxmet 14891 limccoap 15068 lgsne0 15433 gausslemma2dlem1a 15453 |
| Copyright terms: Public domain | W3C validator |