| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | Unicode version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 |
|
| mpand.2 |
|
| Ref | Expression |
|---|---|
| mpand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 |
. 2
| |
| 2 | mpand.2 |
. . 3
| |
| 3 | 2 | ancomsd 269 |
. 2
|
| 4 | 1, 3 | mpan2d 428 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2909 ovig 6125 prcdnql 7667 prcunqu 7668 p1le 8992 nnge1 9129 zltp1le 9497 gtndiv 9538 uzss 9739 addlelt 9960 xrre2 10013 xrre3 10014 zltaddlt1le 10199 zsupcllemstep 10444 modfzo0difsn 10612 seqf1oglem1 10736 leexp2r 10810 expnlbnd2 10882 facavg 10963 wrdred1hash 11110 caubnd2 11623 maxleast 11719 mulcn2 11818 cn1lem 11820 climsqz 11841 climsqz2 11842 climcvg1nlem 11855 fsumabs 11971 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 bitsfzolem 12460 bitsfzo 12461 gcdzeq 12538 algcvgblem 12566 algcvga 12568 lcmdvdsb 12601 coprm 12661 pclemub 12805 bldisj 15069 xblm 15085 metss2lem 15165 bdxmet 15169 limccoap 15346 lgsne0 15711 gausslemma2dlem1a 15731 |
| Copyright terms: Public domain | W3C validator |