ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprlemu Unicode version

Theorem addcanprlemu 7675
Description: Lemma for addcanprg 7676. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprlemu  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  C ) )

Proof of Theorem addcanprlemu
Dummy variables  f  g  h  q  r  s  t  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7535 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnminu 7549 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  v  e.  ( 2nd `  B ) )  ->  E. r  e.  ( 2nd `  B ) r 
<Q  v )
31, 2sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  v  e.  ( 2nd `  B ) )  ->  E. r  e.  ( 2nd `  B ) r 
<Q  v )
433ad2antl2 1162 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  v  e.  ( 2nd `  B ) )  ->  E. r  e.  ( 2nd `  B ) r  <Q  v )
54adantlr 477 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  ->  E. r  e.  ( 2nd `  B
) r  <Q  v
)
6 simprr 531 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  -> 
r  <Q  v )
7 ltexnqi 7469 . . . . . 6  |-  ( r 
<Q  v  ->  E. w  e.  Q.  ( r  +Q  w )  =  v )
86, 7syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  ->  E. w  e.  Q.  ( r  +Q  w
)  =  v )
9 simprl 529 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  ->  w  e.  Q. )
10 halfnqq 7470 . . . . . . 7  |-  ( w  e.  Q.  ->  E. t  e.  Q.  ( t  +Q  t )  =  w )
119, 10syl 14 . . . . . 6  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  ->  E. t  e.  Q.  ( t  +Q  t )  =  w )
12 prop 7535 . . . . . . . . . . . . . 14  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 prarloc2 7564 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  A ) ( u  +Q  t
)  e.  ( 2nd `  A ) )
1412, 13sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  A ) ( u  +Q  t
)  e.  ( 2nd `  A ) )
1514adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
16153ad2antl1 1161 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
1716adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  ( t  e. 
Q.  /\  ( t  +Q  t )  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
1817adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
1918adantlr 477 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( t  e.  Q.  /\  ( t  +Q  t
)  =  w ) )  ->  E. u  e.  ( 1st `  A
) ( u  +Q  t )  e.  ( 2nd `  A ) )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  ->  E. u  e.  ( 1st `  A ) ( u  +Q  t
)  e.  ( 2nd `  A ) )
21 simplll 533 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  -> 
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )
)
2221ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. ) )
2322simp1d 1011 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  A  e.  P. )
2422simp2d 1012 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  B  e.  P. )
25 addclpr 7597 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
2623, 24, 25syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  ( A  +P.  B )  e. 
P. )
27 prop 7535 . . . . . . . . . . 11  |-  ( ( A  +P.  B )  e.  P.  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
2826, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
2923, 12syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
30 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  u  e.  ( 1st `  A
) )
31 elprnql 7541 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
3229, 30, 31syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  u  e.  Q. )
33 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  t  e.  Q. )
34 addclnq 7435 . . . . . . . . . . . 12  |-  ( ( u  e.  Q.  /\  t  e.  Q. )  ->  ( u  +Q  t
)  e.  Q. )
3532, 33, 34syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
u  +Q  t )  e.  Q. )
3624, 1syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
37 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  -> 
r  e.  ( 2nd `  B ) )
3837ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  r  e.  ( 2nd `  B
) )
39 elprnqu 7542 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
4036, 38, 39syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  r  e.  Q. )
41 addclnq 7435 . . . . . . . . . . 11  |-  ( ( ( u  +Q  t
)  e.  Q.  /\  r  e.  Q. )  ->  ( ( u  +Q  t )  +Q  r
)  e.  Q. )
4235, 40, 41syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( u  +Q  t
)  +Q  r )  e.  Q. )
43 prdisj 7552 . . . . . . . . . 10  |-  ( (
<. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P.  /\  (
( u  +Q  t
)  +Q  r )  e.  Q. )  ->  -.  ( ( ( u  +Q  t )  +Q  r )  e.  ( 1st `  ( A  +P.  B ) )  /\  ( ( u  +Q  t )  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4428, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  -.  ( ( ( u  +Q  t )  +Q  r )  e.  ( 1st `  ( A  +P.  B ) )  /\  ( ( u  +Q  t )  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
45 addassnqg 7442 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  Q.  /\  t  e.  Q.  /\  r  e.  Q. )  ->  (
( u  +Q  t
)  +Q  r )  =  ( u  +Q  ( t  +Q  r
) ) )
4632, 33, 40, 45syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( u  +Q  t
)  +Q  r )  =  ( u  +Q  ( t  +Q  r
) ) )
47 addcomnqg 7441 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  Q.  /\  r  e.  Q. )  ->  ( t  +Q  r
)  =  ( r  +Q  t ) )
4847oveq2d 5934 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  Q.  /\  r  e.  Q. )  ->  ( u  +Q  (
t  +Q  r ) )  =  ( u  +Q  ( r  +Q  t ) ) )
4933, 40, 48syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
u  +Q  ( t  +Q  r ) )  =  ( u  +Q  ( r  +Q  t
) ) )
5046, 49eqtrd 2226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( u  +Q  t
)  +Q  r )  =  ( u  +Q  ( r  +Q  t
) ) )
5150adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( u  +Q  t
)  +Q  r )  =  ( u  +Q  ( r  +Q  t
) ) )
52 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  u  e.  ( 1st `  A
) )
53 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
r  +Q  t )  e.  ( 1st `  C
) )
5423adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  A  e.  P. )
5522simp3d 1013 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  C  e.  P. )
5655adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  C  e.  P. )
57 df-iplp 7528 . . . . . . . . . . . . . . 15  |-  +P.  =  ( q  e.  P. ,  s  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  q )  /\  h  e.  ( 1st `  s
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  q )  /\  h  e.  ( 2nd `  s
)  /\  f  =  ( g  +Q  h
) ) } >. )
58 addclnq 7435 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
5957, 58genpprecll 7574 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( u  e.  ( 1st `  A
)  /\  ( r  +Q  t )  e.  ( 1st `  C ) )  ->  ( u  +Q  ( r  +Q  t
) )  e.  ( 1st `  ( A  +P.  C ) ) ) )
6054, 56, 59syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( u  e.  ( 1st `  A )  /\  ( r  +Q  t )  e.  ( 1st `  C ) )  ->  ( u  +Q  ( r  +Q  t
) )  e.  ( 1st `  ( A  +P.  C ) ) ) )
6152, 53, 60mp2and 433 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
u  +Q  ( r  +Q  t ) )  e.  ( 1st `  ( A  +P.  C ) ) )
6251, 61eqeltrd 2270 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 1st `  ( A  +P.  C ) ) )
63 fveq2 5554 . . . . . . . . . . . . 13  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( 1st `  ( A  +P.  B
) )  =  ( 1st `  ( A  +P.  C ) ) )
6463eleq2d 2263 . . . . . . . . . . . 12  |-  ( ( A  +P.  B )  =  ( A  +P.  C )  ->  ( (
( u  +Q  t
)  +Q  r )  e.  ( 1st `  ( A  +P.  B ) )  <-> 
( ( u  +Q  t )  +Q  r
)  e.  ( 1st `  ( A  +P.  C
) ) ) )
6564ad7antlr 501 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( ( u  +Q  t )  +Q  r
)  e.  ( 1st `  ( A  +P.  B
) )  <->  ( (
u  +Q  t )  +Q  r )  e.  ( 1st `  ( A  +P.  C ) ) ) )
6662, 65mpbird 167 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 1st `  ( A  +P.  B ) ) )
6757, 58genppreclu 7575 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( u  +Q  t )  e.  ( 2nd `  A
)  /\  r  e.  ( 2nd `  B ) )  ->  ( (
u  +Q  t )  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
6867ancomsd 269 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( r  e.  ( 2nd `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) )  ->  ( (
u  +Q  t )  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
69683adant3 1019 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( r  e.  ( 2nd `  B )  /\  ( u  +Q  t )  e.  ( 2nd `  A ) )  ->  ( (
u  +Q  t )  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
7069ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  ->  ( (
r  e.  ( 2nd `  B )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
7170imp 124 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  (
u  +Q  t )  e.  ( 2nd `  A
) ) )  -> 
( ( u  +Q  t )  +Q  r
)  e.  ( 2nd `  ( A  +P.  B
) ) )
7271adantrlr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
( r  e.  ( 2nd `  B )  /\  r  <Q  v
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) )
7372anassrs 400 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( u  +Q  t
)  e.  ( 2nd `  A ) )  -> 
( ( u  +Q  t )  +Q  r
)  e.  ( 2nd `  ( A  +P.  B
) ) )
7473ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) )
7574adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) )
7675adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( u  +Q  t
)  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) )
7766, 76jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  /\  (
r  +Q  t )  e.  ( 1st `  C
) )  ->  (
( ( u  +Q  t )  +Q  r
)  e.  ( 1st `  ( A  +P.  B
) )  /\  (
( u  +Q  t
)  +Q  r )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
7844, 77mtand 666 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  -.  ( r  +Q  t
)  e.  ( 1st `  C ) )
79 prop 7535 . . . . . . . . . . 11  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
8055, 79syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
81 ltaddnq 7467 . . . . . . . . . . . . . 14  |-  ( ( t  e.  Q.  /\  t  e.  Q. )  ->  t  <Q  ( t  +Q  t ) )
8233, 33, 81syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  t  <Q  ( t  +Q  t
) )
83 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
t  +Q  t )  =  w )
8482, 83breqtrd 4055 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  t  <Q  w )
85 ltanqi 7462 . . . . . . . . . . . 12  |-  ( ( t  <Q  w  /\  r  e.  Q. )  ->  ( r  +Q  t
)  <Q  ( r  +Q  w ) )
8684, 40, 85syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
r  +Q  t ) 
<Q  ( r  +Q  w
) )
87 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  ->  ( r  +Q  w )  =  v )
8887ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
r  +Q  w )  =  v )
8986, 88breqtrd 4055 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
r  +Q  t ) 
<Q  v )
90 prloc 7551 . . . . . . . . . 10  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  ( r  +Q  t
)  <Q  v )  -> 
( ( r  +Q  t )  e.  ( 1st `  C )  \/  v  e.  ( 2nd `  C ) ) )
9180, 89, 90syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
( r  +Q  t
)  e.  ( 1st `  C )  \/  v  e.  ( 2nd `  C
) ) )
9291orcomd 730 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  (
v  e.  ( 2nd `  C )  \/  (
r  +Q  t )  e.  ( 1st `  C
) ) )
9378, 92ecased 1360 . . . . . . 7  |-  ( ( ( ( ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  /\  ( u  e.  ( 1st `  A
)  /\  ( u  +Q  t )  e.  ( 2nd `  A ) ) )  ->  v  e.  ( 2nd `  C
) )
9420, 93rexlimddv 2616 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  /\  ( r  e.  ( 2nd `  B
)  /\  r  <Q  v ) )  /\  (
w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  /\  ( t  e.  Q.  /\  (
t  +Q  t )  =  w ) )  ->  v  e.  ( 2nd `  C ) )
9511, 94rexlimddv 2616 . . . . 5  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  /\  ( w  e.  Q.  /\  ( r  +Q  w
)  =  v ) )  ->  v  e.  ( 2nd `  C ) )
968, 95rexlimddv 2616 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  /\  ( A  +P.  B )  =  ( A  +P.  C
) )  /\  v  e.  ( 2nd `  B
) )  /\  (
r  e.  ( 2nd `  B )  /\  r  <Q  v ) )  -> 
v  e.  ( 2nd `  C ) )
975, 96rexlimddv 2616 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B )  =  ( A  +P.  C ) )  /\  v  e.  ( 2nd `  B ) )  ->  v  e.  ( 2nd `  C ) )
9897ex 115 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( v  e.  ( 2nd `  B
)  ->  v  e.  ( 2nd `  C ) ) )
9998ssrdv 3185 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A  +P.  B
)  =  ( A  +P.  C ) )  ->  ( 2nd `  B
)  C_  ( 2nd `  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473    C_ wss 3153   <.cop 3621   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    +Q cplq 7342    <Q cltq 7345   P.cnp 7351    +P. cpp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528
This theorem is referenced by:  addcanprg  7676
  Copyright terms: Public domain W3C validator