ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12dan Unicode version

Theorem anim12dan 600
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
anim12dan.1  |-  ( (
ph  /\  ps )  ->  ch )
anim12dan.2  |-  ( (
ph  /\  th )  ->  ta )
Assertion
Ref Expression
anim12dan  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( ch  /\  ta ) )

Proof of Theorem anim12dan
StepHypRef Expression
1 anim12dan.1 . . . 4  |-  ( (
ph  /\  ps )  ->  ch )
21ex 115 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
3 anim12dan.2 . . . 4  |-  ( (
ph  /\  th )  ->  ta )
43ex 115 . . 3  |-  ( ph  ->  ( th  ->  ta ) )
52, 4anim12d 335 . 2  |-  ( ph  ->  ( ( ps  /\  th )  ->  ( ch  /\ 
ta ) ) )
65imp 124 1  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( ch  /\  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xpexr2m  5123  isocnv  5879  f1oiso  5894  f1oiso2  5895  f1o2ndf1  6313  xpf1o  6940  pc11  12596  imasaddfnlemg  13088  imasaddflemg  13090  mhmpropd  13240  ghmsub  13529  invrpropdg  13853  znidom  14361  tgclb  14479  innei  14577  txcn  14689  plymullem1  15162  lgsdir2  15452
  Copyright terms: Public domain W3C validator