| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oiso2 | Unicode version | ||
| Description: Any one-to-one onto
function determines an isomorphism with an induced
relation |
| Ref | Expression |
|---|---|
| f1oiso2.1 |
|
| Ref | Expression |
|---|---|
| f1oiso2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oiso2.1 |
. . 3
| |
| 2 | f1ocnvdm 5904 |
. . . . . . . . 9
| |
| 3 | 2 | adantrr 479 |
. . . . . . . 8
|
| 4 | 3 | 3adant3 1041 |
. . . . . . 7
|
| 5 | f1ocnvdm 5904 |
. . . . . . . . . 10
| |
| 6 | 5 | adantrl 478 |
. . . . . . . . 9
|
| 7 | 6 | 3adant3 1041 |
. . . . . . . 8
|
| 8 | f1ocnvfv2 5901 |
. . . . . . . . . . 11
| |
| 9 | 8 | eqcomd 2235 |
. . . . . . . . . 10
|
| 10 | f1ocnvfv2 5901 |
. . . . . . . . . . 11
| |
| 11 | 10 | eqcomd 2235 |
. . . . . . . . . 10
|
| 12 | 9, 11 | anim12dan 602 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 1041 |
. . . . . . . 8
|
| 14 | simp3 1023 |
. . . . . . . 8
| |
| 15 | fveq2 5626 |
. . . . . . . . . . . 12
| |
| 16 | 15 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 17 | 16 | anbi2d 464 |
. . . . . . . . . 10
|
| 18 | breq2 4086 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anbi12d 473 |
. . . . . . . . 9
|
| 20 | 19 | rspcev 2907 |
. . . . . . . 8
|
| 21 | 7, 13, 14, 20 | syl12anc 1269 |
. . . . . . 7
|
| 22 | fveq2 5626 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 24 | 23 | anbi1d 465 |
. . . . . . . . . 10
|
| 25 | breq1 4085 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | anbi12d 473 |
. . . . . . . . 9
|
| 27 | 26 | rexbidv 2531 |
. . . . . . . 8
|
| 28 | 27 | rspcev 2907 |
. . . . . . 7
|
| 29 | 4, 21, 28 | syl2anc 411 |
. . . . . 6
|
| 30 | 29 | 3expib 1230 |
. . . . 5
|
| 31 | simp3ll 1092 |
. . . . . . . . 9
| |
| 32 | simp1 1021 |
. . . . . . . . . 10
| |
| 33 | simp2l 1047 |
. . . . . . . . . 10
| |
| 34 | f1of 5571 |
. . . . . . . . . . 11
| |
| 35 | 34 | ffvelcdmda 5769 |
. . . . . . . . . 10
|
| 36 | 32, 33, 35 | syl2anc 411 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2306 |
. . . . . . . 8
|
| 38 | simp3lr 1093 |
. . . . . . . . 9
| |
| 39 | simp2r 1048 |
. . . . . . . . . 10
| |
| 40 | 34 | ffvelcdmda 5769 |
. . . . . . . . . 10
|
| 41 | 32, 39, 40 | syl2anc 411 |
. . . . . . . . 9
|
| 42 | 38, 41 | eqeltrd 2306 |
. . . . . . . 8
|
| 43 | simp3r 1050 |
. . . . . . . . 9
| |
| 44 | 31 | eqcomd 2235 |
. . . . . . . . . 10
|
| 45 | f1ocnvfv 5902 |
. . . . . . . . . . 11
| |
| 46 | 32, 33, 45 | syl2anc 411 |
. . . . . . . . . 10
|
| 47 | 44, 46 | mpd 13 |
. . . . . . . . 9
|
| 48 | 38 | eqcomd 2235 |
. . . . . . . . . 10
|
| 49 | f1ocnvfv 5902 |
. . . . . . . . . . 11
| |
| 50 | 32, 39, 49 | syl2anc 411 |
. . . . . . . . . 10
|
| 51 | 48, 50 | mpd 13 |
. . . . . . . . 9
|
| 52 | 43, 47, 51 | 3brtr4d 4114 |
. . . . . . . 8
|
| 53 | 37, 42, 52 | jca31 309 |
. . . . . . 7
|
| 54 | 53 | 3exp 1226 |
. . . . . 6
|
| 55 | 54 | rexlimdvv 2655 |
. . . . 5
|
| 56 | 30, 55 | impbid 129 |
. . . 4
|
| 57 | 56 | opabbidv 4149 |
. . 3
|
| 58 | 1, 57 | eqtrid 2274 |
. 2
|
| 59 | f1oiso 5949 |
. 2
| |
| 60 | 58, 59 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |