| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1oiso2 | Unicode version | ||
| Description: Any one-to-one onto
function determines an isomorphism with an induced
       relation  | 
| Ref | Expression | 
|---|---|
| f1oiso2.1 | 
 | 
| Ref | Expression | 
|---|---|
| f1oiso2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1oiso2.1 | 
. . 3
 | |
| 2 | f1ocnvdm 5828 | 
. . . . . . . . 9
 | |
| 3 | 2 | adantrr 479 | 
. . . . . . . 8
 | 
| 4 | 3 | 3adant3 1019 | 
. . . . . . 7
 | 
| 5 | f1ocnvdm 5828 | 
. . . . . . . . . 10
 | |
| 6 | 5 | adantrl 478 | 
. . . . . . . . 9
 | 
| 7 | 6 | 3adant3 1019 | 
. . . . . . . 8
 | 
| 8 | f1ocnvfv2 5825 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | eqcomd 2202 | 
. . . . . . . . . 10
 | 
| 10 | f1ocnvfv2 5825 | 
. . . . . . . . . . 11
 | |
| 11 | 10 | eqcomd 2202 | 
. . . . . . . . . 10
 | 
| 12 | 9, 11 | anim12dan 600 | 
. . . . . . . . 9
 | 
| 13 | 12 | 3adant3 1019 | 
. . . . . . . 8
 | 
| 14 | simp3 1001 | 
. . . . . . . 8
 | |
| 15 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 16 | 15 | eqeq2d 2208 | 
. . . . . . . . . . 11
 | 
| 17 | 16 | anbi2d 464 | 
. . . . . . . . . 10
 | 
| 18 | breq2 4037 | 
. . . . . . . . . 10
 | |
| 19 | 17, 18 | anbi12d 473 | 
. . . . . . . . 9
 | 
| 20 | 19 | rspcev 2868 | 
. . . . . . . 8
 | 
| 21 | 7, 13, 14, 20 | syl12anc 1247 | 
. . . . . . 7
 | 
| 22 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 23 | 22 | eqeq2d 2208 | 
. . . . . . . . . . 11
 | 
| 24 | 23 | anbi1d 465 | 
. . . . . . . . . 10
 | 
| 25 | breq1 4036 | 
. . . . . . . . . 10
 | |
| 26 | 24, 25 | anbi12d 473 | 
. . . . . . . . 9
 | 
| 27 | 26 | rexbidv 2498 | 
. . . . . . . 8
 | 
| 28 | 27 | rspcev 2868 | 
. . . . . . 7
 | 
| 29 | 4, 21, 28 | syl2anc 411 | 
. . . . . 6
 | 
| 30 | 29 | 3expib 1208 | 
. . . . 5
 | 
| 31 | simp3ll 1070 | 
. . . . . . . . 9
 | |
| 32 | simp1 999 | 
. . . . . . . . . 10
 | |
| 33 | simp2l 1025 | 
. . . . . . . . . 10
 | |
| 34 | f1of 5504 | 
. . . . . . . . . . 11
 | |
| 35 | 34 | ffvelcdmda 5697 | 
. . . . . . . . . 10
 | 
| 36 | 32, 33, 35 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 37 | 31, 36 | eqeltrd 2273 | 
. . . . . . . 8
 | 
| 38 | simp3lr 1071 | 
. . . . . . . . 9
 | |
| 39 | simp2r 1026 | 
. . . . . . . . . 10
 | |
| 40 | 34 | ffvelcdmda 5697 | 
. . . . . . . . . 10
 | 
| 41 | 32, 39, 40 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 42 | 38, 41 | eqeltrd 2273 | 
. . . . . . . 8
 | 
| 43 | simp3r 1028 | 
. . . . . . . . 9
 | |
| 44 | 31 | eqcomd 2202 | 
. . . . . . . . . 10
 | 
| 45 | f1ocnvfv 5826 | 
. . . . . . . . . . 11
 | |
| 46 | 32, 33, 45 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 47 | 44, 46 | mpd 13 | 
. . . . . . . . 9
 | 
| 48 | 38 | eqcomd 2202 | 
. . . . . . . . . 10
 | 
| 49 | f1ocnvfv 5826 | 
. . . . . . . . . . 11
 | |
| 50 | 32, 39, 49 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 51 | 48, 50 | mpd 13 | 
. . . . . . . . 9
 | 
| 52 | 43, 47, 51 | 3brtr4d 4065 | 
. . . . . . . 8
 | 
| 53 | 37, 42, 52 | jca31 309 | 
. . . . . . 7
 | 
| 54 | 53 | 3exp 1204 | 
. . . . . 6
 | 
| 55 | 54 | rexlimdvv 2621 | 
. . . . 5
 | 
| 56 | 30, 55 | impbid 129 | 
. . . 4
 | 
| 57 | 56 | opabbidv 4099 | 
. . 3
 | 
| 58 | 1, 57 | eqtrid 2241 | 
. 2
 | 
| 59 | f1oiso 5873 | 
. 2
 | |
| 60 | 58, 59 | mpdan 421 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |