Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oiso2 | Unicode version |
Description: Any one-to-one onto function determines an isomorphism with an induced relation . (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
f1oiso2.1 |
Ref | Expression |
---|---|
f1oiso2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oiso2.1 | . . 3 | |
2 | f1ocnvdm 5749 | . . . . . . . . 9 | |
3 | 2 | adantrr 471 | . . . . . . . 8 |
4 | 3 | 3adant3 1007 | . . . . . . 7 |
5 | f1ocnvdm 5749 | . . . . . . . . . 10 | |
6 | 5 | adantrl 470 | . . . . . . . . 9 |
7 | 6 | 3adant3 1007 | . . . . . . . 8 |
8 | f1ocnvfv2 5746 | . . . . . . . . . . 11 | |
9 | 8 | eqcomd 2171 | . . . . . . . . . 10 |
10 | f1ocnvfv2 5746 | . . . . . . . . . . 11 | |
11 | 10 | eqcomd 2171 | . . . . . . . . . 10 |
12 | 9, 11 | anim12dan 590 | . . . . . . . . 9 |
13 | 12 | 3adant3 1007 | . . . . . . . 8 |
14 | simp3 989 | . . . . . . . 8 | |
15 | fveq2 5486 | . . . . . . . . . . . 12 | |
16 | 15 | eqeq2d 2177 | . . . . . . . . . . 11 |
17 | 16 | anbi2d 460 | . . . . . . . . . 10 |
18 | breq2 3986 | . . . . . . . . . 10 | |
19 | 17, 18 | anbi12d 465 | . . . . . . . . 9 |
20 | 19 | rspcev 2830 | . . . . . . . 8 |
21 | 7, 13, 14, 20 | syl12anc 1226 | . . . . . . 7 |
22 | fveq2 5486 | . . . . . . . . . . . 12 | |
23 | 22 | eqeq2d 2177 | . . . . . . . . . . 11 |
24 | 23 | anbi1d 461 | . . . . . . . . . 10 |
25 | breq1 3985 | . . . . . . . . . 10 | |
26 | 24, 25 | anbi12d 465 | . . . . . . . . 9 |
27 | 26 | rexbidv 2467 | . . . . . . . 8 |
28 | 27 | rspcev 2830 | . . . . . . 7 |
29 | 4, 21, 28 | syl2anc 409 | . . . . . 6 |
30 | 29 | 3expib 1196 | . . . . 5 |
31 | simp3ll 1058 | . . . . . . . . 9 | |
32 | simp1 987 | . . . . . . . . . 10 | |
33 | simp2l 1013 | . . . . . . . . . 10 | |
34 | f1of 5432 | . . . . . . . . . . 11 | |
35 | 34 | ffvelrnda 5620 | . . . . . . . . . 10 |
36 | 32, 33, 35 | syl2anc 409 | . . . . . . . . 9 |
37 | 31, 36 | eqeltrd 2243 | . . . . . . . 8 |
38 | simp3lr 1059 | . . . . . . . . 9 | |
39 | simp2r 1014 | . . . . . . . . . 10 | |
40 | 34 | ffvelrnda 5620 | . . . . . . . . . 10 |
41 | 32, 39, 40 | syl2anc 409 | . . . . . . . . 9 |
42 | 38, 41 | eqeltrd 2243 | . . . . . . . 8 |
43 | simp3r 1016 | . . . . . . . . 9 | |
44 | 31 | eqcomd 2171 | . . . . . . . . . 10 |
45 | f1ocnvfv 5747 | . . . . . . . . . . 11 | |
46 | 32, 33, 45 | syl2anc 409 | . . . . . . . . . 10 |
47 | 44, 46 | mpd 13 | . . . . . . . . 9 |
48 | 38 | eqcomd 2171 | . . . . . . . . . 10 |
49 | f1ocnvfv 5747 | . . . . . . . . . . 11 | |
50 | 32, 39, 49 | syl2anc 409 | . . . . . . . . . 10 |
51 | 48, 50 | mpd 13 | . . . . . . . . 9 |
52 | 43, 47, 51 | 3brtr4d 4014 | . . . . . . . 8 |
53 | 37, 42, 52 | jca31 307 | . . . . . . 7 |
54 | 53 | 3exp 1192 | . . . . . 6 |
55 | 54 | rexlimdvv 2590 | . . . . 5 |
56 | 30, 55 | impbid 128 | . . . 4 |
57 | 56 | opabbidv 4048 | . . 3 |
58 | 1, 57 | syl5eq 2211 | . 2 |
59 | f1oiso 5794 | . 2 | |
60 | 58, 59 | mpdan 418 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 copab 4042 ccnv 4603 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |