ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oiso2 Unicode version

Theorem f1oiso2 5822
Description: Any one-to-one onto function determines an isomorphism with an induced relation  S. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
f1oiso2.1  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }
Assertion
Ref Expression
f1oiso2  |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, H, y    x, R, y
Allowed substitution hints:    S( x, y)

Proof of Theorem f1oiso2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oiso2.1 . . 3  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }
2 f1ocnvdm 5776 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  B )  ->  ( `' H `  x )  e.  A
)
32adantrr 479 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( `' H `  x )  e.  A )
433adant3 1017 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( `' H `  x )  e.  A
)
5 f1ocnvdm 5776 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  y  e.  B )  ->  ( `' H `  y )  e.  A
)
65adantrl 478 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( `' H `  y )  e.  A )
763adant3 1017 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( `' H `  y )  e.  A
)
8 f1ocnvfv2 5773 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  B )  ->  ( H `  ( `' H `  x ) )  =  x )
98eqcomd 2183 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  B )  ->  x  =  ( H `
 ( `' H `  x ) ) )
10 f1ocnvfv2 5773 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  y  e.  B )  ->  ( H `  ( `' H `  y ) )  =  y )
1110eqcomd 2183 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  y  e.  B )  ->  y  =  ( H `
 ( `' H `  y ) ) )
129, 11anim12dan 600 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) ) )
13123adant3 1017 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) ) )
14 simp3 999 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( `' H `  x ) R ( `' H `  y ) )
15 fveq2 5511 . . . . . . . . . . . 12  |-  ( w  =  ( `' H `  y )  ->  ( H `  w )  =  ( H `  ( `' H `  y ) ) )
1615eqeq2d 2189 . . . . . . . . . . 11  |-  ( w  =  ( `' H `  y )  ->  (
y  =  ( H `
 w )  <->  y  =  ( H `  ( `' H `  y ) ) ) )
1716anbi2d 464 . . . . . . . . . 10  |-  ( w  =  ( `' H `  y )  ->  (
( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  <->  ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) ) ) )
18 breq2 4004 . . . . . . . . . 10  |-  ( w  =  ( `' H `  y )  ->  (
( `' H `  x ) R w  <-> 
( `' H `  x ) R ( `' H `  y ) ) )
1917, 18anbi12d 473 . . . . . . . . 9  |-  ( w  =  ( `' H `  y )  ->  (
( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w )  <->  ( (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) )  /\  ( `' H `  x ) R ( `' H `  y ) ) ) )
2019rspcev 2841 . . . . . . . 8  |-  ( ( ( `' H `  y )  e.  A  /\  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) )  /\  ( `' H `  x ) R ( `' H `  y ) ) )  ->  E. w  e.  A  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w ) )
217, 13, 14, 20syl12anc 1236 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  ->  E. w  e.  A  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w ) )
22 fveq2 5511 . . . . . . . . . . . 12  |-  ( z  =  ( `' H `  x )  ->  ( H `  z )  =  ( H `  ( `' H `  x ) ) )
2322eqeq2d 2189 . . . . . . . . . . 11  |-  ( z  =  ( `' H `  x )  ->  (
x  =  ( H `
 z )  <->  x  =  ( H `  ( `' H `  x ) ) ) )
2423anbi1d 465 . . . . . . . . . 10  |-  ( z  =  ( `' H `  x )  ->  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  <->  ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) ) ) )
25 breq1 4003 . . . . . . . . . 10  |-  ( z  =  ( `' H `  x )  ->  (
z R w  <->  ( `' H `  x ) R w ) )
2624, 25anbi12d 473 . . . . . . . . 9  |-  ( z  =  ( `' H `  x )  ->  (
( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w )  <->  ( (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  w ) )  /\  ( `' H `  x ) R w ) ) )
2726rexbidv 2478 . . . . . . . 8  |-  ( z  =  ( `' H `  x )  ->  ( E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w )  <->  E. w  e.  A  ( (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  w ) )  /\  ( `' H `  x ) R w ) ) )
2827rspcev 2841 . . . . . . 7  |-  ( ( ( `' H `  x )  e.  A  /\  E. w  e.  A  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w ) )  ->  E. z  e.  A  E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w ) )
294, 21, 28syl2anc 411 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  ->  E. z  e.  A  E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w ) )
30293expib 1206 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  ( (
( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  ->  E. z  e.  A  E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w ) ) )
31 simp3ll 1068 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  x  =  ( H `  z ) )
32 simp1 997 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  H : A -1-1-onto-> B
)
33 simp2l 1023 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  z  e.  A
)
34 f1of 5457 . . . . . . . . . . 11  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
3534ffvelcdmda 5647 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  A )  ->  ( H `  z
)  e.  B )
3632, 33, 35syl2anc 411 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  z )  e.  B
)
3731, 36eqeltrd 2254 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  x  e.  B
)
38 simp3lr 1069 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  y  =  ( H `  w ) )
39 simp2r 1024 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  w  e.  A
)
4034ffvelcdmda 5647 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  A )  ->  ( H `  w
)  e.  B )
4132, 39, 40syl2anc 411 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  w )  e.  B
)
4238, 41eqeltrd 2254 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  y  e.  B
)
43 simp3r 1026 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  z R w )
4431eqcomd 2183 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  z )  =  x )
45 f1ocnvfv 5774 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  A )  ->  ( ( H `  z )  =  x  ->  ( `' H `  x )  =  z ) )
4632, 33, 45syl2anc 411 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( ( H `
 z )  =  x  ->  ( `' H `  x )  =  z ) )
4744, 46mpd 13 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( `' H `  x )  =  z )
4838eqcomd 2183 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  w )  =  y )
49 f1ocnvfv 5774 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  A )  ->  ( ( H `  w )  =  y  ->  ( `' H `  y )  =  w ) )
5032, 39, 49syl2anc 411 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( ( H `
 w )  =  y  ->  ( `' H `  y )  =  w ) )
5148, 50mpd 13 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( `' H `  y )  =  w )
5243, 47, 513brtr4d 4032 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( `' H `  x ) R ( `' H `  y ) )
5337, 42, 52jca31 309 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) )
54533exp 1202 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  ( (
z  e.  A  /\  w  e.  A )  ->  ( ( ( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w )  -> 
( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) ) ) )
5554rexlimdvv 2601 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  ( E. z  e.  A  E. w  e.  A  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w )  ->  (
( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) ) ) )
5630, 55impbid 129 . . . 4  |-  ( H : A -1-1-onto-> B  ->  ( (
( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  <->  E. z  e.  A  E. w  e.  A  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) ) )
5756opabbidv 4066 . . 3  |-  ( H : A -1-1-onto-> B  ->  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) ) }  =  { <. x ,  y >.  |  E. z  e.  A  E. w  e.  A  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w ) } )
581, 57eqtrid 2222 . 2  |-  ( H : A -1-1-onto-> B  ->  S  =  { <. x ,  y
>.  |  E. z  e.  A  E. w  e.  A  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) } )
59 f1oiso 5821 . 2  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. x ,  y >.  |  E. z  e.  A  E. w  e.  A  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
6058, 59mpdan 421 1  |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000   {copab 4060   `'ccnv 4622   -1-1-onto->wf1o 5211   ` cfv 5212    Isom wiso 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator