| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oiso2 | Unicode version | ||
| Description: Any one-to-one onto
function determines an isomorphism with an induced
relation |
| Ref | Expression |
|---|---|
| f1oiso2.1 |
|
| Ref | Expression |
|---|---|
| f1oiso2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oiso2.1 |
. . 3
| |
| 2 | f1ocnvdm 5850 |
. . . . . . . . 9
| |
| 3 | 2 | adantrr 479 |
. . . . . . . 8
|
| 4 | 3 | 3adant3 1020 |
. . . . . . 7
|
| 5 | f1ocnvdm 5850 |
. . . . . . . . . 10
| |
| 6 | 5 | adantrl 478 |
. . . . . . . . 9
|
| 7 | 6 | 3adant3 1020 |
. . . . . . . 8
|
| 8 | f1ocnvfv2 5847 |
. . . . . . . . . . 11
| |
| 9 | 8 | eqcomd 2211 |
. . . . . . . . . 10
|
| 10 | f1ocnvfv2 5847 |
. . . . . . . . . . 11
| |
| 11 | 10 | eqcomd 2211 |
. . . . . . . . . 10
|
| 12 | 9, 11 | anim12dan 600 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 1020 |
. . . . . . . 8
|
| 14 | simp3 1002 |
. . . . . . . 8
| |
| 15 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 16 | 15 | eqeq2d 2217 |
. . . . . . . . . . 11
|
| 17 | 16 | anbi2d 464 |
. . . . . . . . . 10
|
| 18 | breq2 4048 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anbi12d 473 |
. . . . . . . . 9
|
| 20 | 19 | rspcev 2877 |
. . . . . . . 8
|
| 21 | 7, 13, 14, 20 | syl12anc 1248 |
. . . . . . 7
|
| 22 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq2d 2217 |
. . . . . . . . . . 11
|
| 24 | 23 | anbi1d 465 |
. . . . . . . . . 10
|
| 25 | breq1 4047 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | anbi12d 473 |
. . . . . . . . 9
|
| 27 | 26 | rexbidv 2507 |
. . . . . . . 8
|
| 28 | 27 | rspcev 2877 |
. . . . . . 7
|
| 29 | 4, 21, 28 | syl2anc 411 |
. . . . . 6
|
| 30 | 29 | 3expib 1209 |
. . . . 5
|
| 31 | simp3ll 1071 |
. . . . . . . . 9
| |
| 32 | simp1 1000 |
. . . . . . . . . 10
| |
| 33 | simp2l 1026 |
. . . . . . . . . 10
| |
| 34 | f1of 5522 |
. . . . . . . . . . 11
| |
| 35 | 34 | ffvelcdmda 5715 |
. . . . . . . . . 10
|
| 36 | 32, 33, 35 | syl2anc 411 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2282 |
. . . . . . . 8
|
| 38 | simp3lr 1072 |
. . . . . . . . 9
| |
| 39 | simp2r 1027 |
. . . . . . . . . 10
| |
| 40 | 34 | ffvelcdmda 5715 |
. . . . . . . . . 10
|
| 41 | 32, 39, 40 | syl2anc 411 |
. . . . . . . . 9
|
| 42 | 38, 41 | eqeltrd 2282 |
. . . . . . . 8
|
| 43 | simp3r 1029 |
. . . . . . . . 9
| |
| 44 | 31 | eqcomd 2211 |
. . . . . . . . . 10
|
| 45 | f1ocnvfv 5848 |
. . . . . . . . . . 11
| |
| 46 | 32, 33, 45 | syl2anc 411 |
. . . . . . . . . 10
|
| 47 | 44, 46 | mpd 13 |
. . . . . . . . 9
|
| 48 | 38 | eqcomd 2211 |
. . . . . . . . . 10
|
| 49 | f1ocnvfv 5848 |
. . . . . . . . . . 11
| |
| 50 | 32, 39, 49 | syl2anc 411 |
. . . . . . . . . 10
|
| 51 | 48, 50 | mpd 13 |
. . . . . . . . 9
|
| 52 | 43, 47, 51 | 3brtr4d 4076 |
. . . . . . . 8
|
| 53 | 37, 42, 52 | jca31 309 |
. . . . . . 7
|
| 54 | 53 | 3exp 1205 |
. . . . . 6
|
| 55 | 54 | rexlimdvv 2630 |
. . . . 5
|
| 56 | 30, 55 | impbid 129 |
. . . 4
|
| 57 | 56 | opabbidv 4110 |
. . 3
|
| 58 | 1, 57 | eqtrid 2250 |
. 2
|
| 59 | f1oiso 5895 |
. 2
| |
| 60 | 58, 59 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |