Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oiso2 | Unicode version |
Description: Any one-to-one onto function determines an isomorphism with an induced relation . (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
f1oiso2.1 |
Ref | Expression |
---|---|
f1oiso2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oiso2.1 | . . 3 | |
2 | f1ocnvdm 5760 | . . . . . . . . 9 | |
3 | 2 | adantrr 476 | . . . . . . . 8 |
4 | 3 | 3adant3 1012 | . . . . . . 7 |
5 | f1ocnvdm 5760 | . . . . . . . . . 10 | |
6 | 5 | adantrl 475 | . . . . . . . . 9 |
7 | 6 | 3adant3 1012 | . . . . . . . 8 |
8 | f1ocnvfv2 5757 | . . . . . . . . . . 11 | |
9 | 8 | eqcomd 2176 | . . . . . . . . . 10 |
10 | f1ocnvfv2 5757 | . . . . . . . . . . 11 | |
11 | 10 | eqcomd 2176 | . . . . . . . . . 10 |
12 | 9, 11 | anim12dan 595 | . . . . . . . . 9 |
13 | 12 | 3adant3 1012 | . . . . . . . 8 |
14 | simp3 994 | . . . . . . . 8 | |
15 | fveq2 5496 | . . . . . . . . . . . 12 | |
16 | 15 | eqeq2d 2182 | . . . . . . . . . . 11 |
17 | 16 | anbi2d 461 | . . . . . . . . . 10 |
18 | breq2 3993 | . . . . . . . . . 10 | |
19 | 17, 18 | anbi12d 470 | . . . . . . . . 9 |
20 | 19 | rspcev 2834 | . . . . . . . 8 |
21 | 7, 13, 14, 20 | syl12anc 1231 | . . . . . . 7 |
22 | fveq2 5496 | . . . . . . . . . . . 12 | |
23 | 22 | eqeq2d 2182 | . . . . . . . . . . 11 |
24 | 23 | anbi1d 462 | . . . . . . . . . 10 |
25 | breq1 3992 | . . . . . . . . . 10 | |
26 | 24, 25 | anbi12d 470 | . . . . . . . . 9 |
27 | 26 | rexbidv 2471 | . . . . . . . 8 |
28 | 27 | rspcev 2834 | . . . . . . 7 |
29 | 4, 21, 28 | syl2anc 409 | . . . . . 6 |
30 | 29 | 3expib 1201 | . . . . 5 |
31 | simp3ll 1063 | . . . . . . . . 9 | |
32 | simp1 992 | . . . . . . . . . 10 | |
33 | simp2l 1018 | . . . . . . . . . 10 | |
34 | f1of 5442 | . . . . . . . . . . 11 | |
35 | 34 | ffvelrnda 5631 | . . . . . . . . . 10 |
36 | 32, 33, 35 | syl2anc 409 | . . . . . . . . 9 |
37 | 31, 36 | eqeltrd 2247 | . . . . . . . 8 |
38 | simp3lr 1064 | . . . . . . . . 9 | |
39 | simp2r 1019 | . . . . . . . . . 10 | |
40 | 34 | ffvelrnda 5631 | . . . . . . . . . 10 |
41 | 32, 39, 40 | syl2anc 409 | . . . . . . . . 9 |
42 | 38, 41 | eqeltrd 2247 | . . . . . . . 8 |
43 | simp3r 1021 | . . . . . . . . 9 | |
44 | 31 | eqcomd 2176 | . . . . . . . . . 10 |
45 | f1ocnvfv 5758 | . . . . . . . . . . 11 | |
46 | 32, 33, 45 | syl2anc 409 | . . . . . . . . . 10 |
47 | 44, 46 | mpd 13 | . . . . . . . . 9 |
48 | 38 | eqcomd 2176 | . . . . . . . . . 10 |
49 | f1ocnvfv 5758 | . . . . . . . . . . 11 | |
50 | 32, 39, 49 | syl2anc 409 | . . . . . . . . . 10 |
51 | 48, 50 | mpd 13 | . . . . . . . . 9 |
52 | 43, 47, 51 | 3brtr4d 4021 | . . . . . . . 8 |
53 | 37, 42, 52 | jca31 307 | . . . . . . 7 |
54 | 53 | 3exp 1197 | . . . . . 6 |
55 | 54 | rexlimdvv 2594 | . . . . 5 |
56 | 30, 55 | impbid 128 | . . . 4 |
57 | 56 | opabbidv 4055 | . . 3 |
58 | 1, 57 | eqtrid 2215 | . 2 |
59 | f1oiso 5805 | . 2 | |
60 | 58, 59 | mpdan 419 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 copab 4049 ccnv 4610 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |