Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpexr2m | Unicode version |
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
xpexr2m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpm 5030 | . 2 | |
2 | dmxpm 4829 | . . . . . 6 | |
3 | 2 | adantl 275 | . . . . 5 |
4 | dmexg 4873 | . . . . . 6 | |
5 | 4 | adantr 274 | . . . . 5 |
6 | 3, 5 | eqeltrrd 2248 | . . . 4 |
7 | rnxpm 5038 | . . . . . 6 | |
8 | 7 | adantl 275 | . . . . 5 |
9 | rnexg 4874 | . . . . . 6 | |
10 | 9 | adantr 274 | . . . . 5 |
11 | 8, 10 | eqeltrrd 2248 | . . . 4 |
12 | 6, 11 | anim12dan 595 | . . 3 |
13 | 12 | ancom2s 561 | . 2 |
14 | 1, 13 | sylan2br 286 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 cvv 2730 cxp 4607 cdm 4609 crn 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-cnv 4617 df-dm 4619 df-rn 4620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |