| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexr2m | Unicode version | ||
| Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpexr2m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpm 5092 |
. 2
| |
| 2 | dmxpm 4887 |
. . . . . 6
| |
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | dmexg 4931 |
. . . . . 6
| |
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | 3, 5 | eqeltrrd 2274 |
. . . 4
|
| 7 | rnxpm 5100 |
. . . . . 6
| |
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | rnexg 4932 |
. . . . . 6
| |
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | 8, 10 | eqeltrrd 2274 |
. . . 4
|
| 12 | 6, 11 | anim12dan 600 |
. . 3
|
| 13 | 12 | ancom2s 566 |
. 2
|
| 14 | 1, 13 | sylan2br 288 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-dm 4674 df-rn 4675 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |