ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m Unicode version

Theorem xpexr2m 5111
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem xpexr2m
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 5091 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
2 dmxpm 4886 . . . . . 6  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
32adantl 277 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  =  A )
4 dmexg 4930 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  dom  ( A  X.  B
)  e.  _V )
54adantr 276 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  e. 
_V )
63, 5eqeltrrd 2274 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  A  e.  _V )
7 rnxpm 5099 . . . . . 6  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
87adantl 277 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  =  B )
9 rnexg 4931 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  ran  ( A  X.  B
)  e.  _V )
109adantr 276 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  e. 
_V )
118, 10eqeltrrd 2274 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  B  e.  _V )
126, 11anim12dan 600 . . 3  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. b  b  e.  B  /\  E. a 
a  e.  A ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
1312ancom2s 566 . 2  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. a  a  e.  A  /\  E. b 
b  e.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
141, 13sylan2br 288 1  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    X. cxp 4661   dom cdm 4663   ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator