ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m Unicode version

Theorem xpexr2m 5050
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem xpexr2m
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 5030 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
2 dmxpm 4829 . . . . . 6  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
32adantl 275 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  =  A )
4 dmexg 4873 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  dom  ( A  X.  B
)  e.  _V )
54adantr 274 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  e. 
_V )
63, 5eqeltrrd 2248 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  A  e.  _V )
7 rnxpm 5038 . . . . . 6  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
87adantl 275 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  =  B )
9 rnexg 4874 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  ran  ( A  X.  B
)  e.  _V )
109adantr 274 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  e. 
_V )
118, 10eqeltrrd 2248 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  B  e.  _V )
126, 11anim12dan 595 . . 3  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. b  b  e.  B  /\  E. a 
a  e.  A ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
1312ancom2s 561 . 2  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. a  a  e.  A  /\  E. b 
b  e.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
141, 13sylan2br 286 1  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730    X. cxp 4607   dom cdm 4609   ran crn 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-cnv 4617  df-dm 4619  df-rn 4620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator