ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m Unicode version

Theorem xpexr2m 5045
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem xpexr2m
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 5025 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
2 dmxpm 4824 . . . . . 6  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
32adantl 275 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  =  A )
4 dmexg 4868 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  dom  ( A  X.  B
)  e.  _V )
54adantr 274 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  e. 
_V )
63, 5eqeltrrd 2244 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  A  e.  _V )
7 rnxpm 5033 . . . . . 6  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
87adantl 275 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  =  B )
9 rnexg 4869 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  ran  ( A  X.  B
)  e.  _V )
109adantr 274 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  e. 
_V )
118, 10eqeltrrd 2244 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  B  e.  _V )
126, 11anim12dan 590 . . 3  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. b  b  e.  B  /\  E. a 
a  e.  A ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
1312ancom2s 556 . 2  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. a  a  e.  A  /\  E. b 
b  e.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
141, 13sylan2br 286 1  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726    X. cxp 4602   dom cdm 4604   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator