ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m Unicode version

Theorem xpexr2m 4885
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem xpexr2m
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 4866 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
2 dmxpm 4669 . . . . . 6  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
32adantl 272 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  =  A )
4 dmexg 4710 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  dom  ( A  X.  B
)  e.  _V )
54adantr 271 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  dom  ( A  X.  B )  e. 
_V )
63, 5eqeltrrd 2166 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. b  b  e.  B
)  ->  A  e.  _V )
7 rnxpm 4873 . . . . . 6  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
87adantl 272 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  =  B )
9 rnexg 4711 . . . . . 6  |-  ( ( A  X.  B )  e.  C  ->  ran  ( A  X.  B
)  e.  _V )
109adantr 271 . . . . 5  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  ran  ( A  X.  B )  e. 
_V )
118, 10eqeltrrd 2166 . . . 4  |-  ( ( ( A  X.  B
)  e.  C  /\  E. a  a  e.  A
)  ->  B  e.  _V )
126, 11anim12dan 568 . . 3  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. b  b  e.  B  /\  E. a 
a  e.  A ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
1312ancom2s 534 . 2  |-  ( ( ( A  X.  B
)  e.  C  /\  ( E. a  a  e.  A  /\  E. b 
b  e.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
141, 13sylan2br 283 1  |-  ( ( ( A  X.  B
)  e.  C  /\  E. x  x  e.  ( A  X.  B ) )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290   E.wex 1427    e. wcel 1439   _Vcvv 2620    X. cxp 4450   dom cdm 4452   ran crn 4453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4458  df-rel 4459  df-cnv 4460  df-dm 4462  df-rn 4463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator