ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgclb Unicode version

Theorem tgclb 11932
Description: The property tgcl 11931 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )

Proof of Theorem tgclb
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 11931 . 2  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
2 df-topgen 11840 . . . . . . . . . . . . 13  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
32funmpt2 5087 . . . . . . . . . . . 12  |-  Fun  topGen
4 funrel 5066 . . . . . . . . . . . 12  |-  ( Fun  topGen  ->  Rel  topGen )
53, 4ax-mp 7 . . . . . . . . . . 11  |-  Rel  topGen
6 0opn 11872 . . . . . . . . . . 11  |-  ( (
topGen `  B )  e. 
Top  ->  (/)  e.  ( topGen `  B ) )
7 relelfvdm 5371 . . . . . . . . . . 11  |-  ( ( Rel  topGen  /\  (/)  e.  (
topGen `  B ) )  ->  B  e.  dom  topGen )
85, 6, 7sylancr 406 . . . . . . . . . 10  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  dom  topGen )
98elexd 2646 . . . . . . . . 9  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  _V )
10 bastg 11928 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  C_  ( topGen `  B )
)
119, 10syl 14 . . . . . . . 8  |-  ( (
topGen `  B )  e. 
Top  ->  B  C_  ( topGen `
 B ) )
1211sselda 3039 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  B )  ->  x  e.  ( topGen `  B )
)
1311sselda 3039 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  y  e.  B )  ->  y  e.  ( topGen `  B )
)
1412, 13anim12dan 568 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) ) )
15 inopn 11869 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  ( topGen `  B )  /\  y  e.  ( topGen `
 B ) )  ->  ( x  i^i  y )  e.  (
topGen `  B ) )
16153expb 1147 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  ( topGen `  B
)  /\  y  e.  ( topGen `  B )
) )  ->  (
x  i^i  y )  e.  ( topGen `  B )
)
1714, 16syldan 277 . . . . 5  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  i^i  y
)  e.  ( topGen `  B ) )
18 tg2 11927 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  ( topGen `  B )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1918ralrimiva 2458 . . . . 5  |-  ( ( x  i^i  y )  e.  ( topGen `  B
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
2017, 19syl 14 . . . 4  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
2120ralrimivva 2467 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
22 isbasis2g 11910 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
239, 22syl 14 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
2421, 23mpbird 166 . 2  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  TopBases )
251, 24impbii 125 1  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1445   {cab 2081   A.wral 2370   E.wrex 2371   _Vcvv 2633    i^i cin 3012    C_ wss 3013   (/)c0 3302   ~Pcpw 3449   U.cuni 3675   dom cdm 4467   Rel wrel 4472   Fun wfun 5043   ` cfv 5049   topGenctg 11834   Topctop 11863   TopBasesctb 11907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-topgen 11840  df-top 11864  df-bases 11908
This theorem is referenced by:  bastop2  11951  tgcn  12074  tgcnp  12075
  Copyright terms: Public domain W3C validator