ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgclb Unicode version

Theorem tgclb 12507
Description: The property tgcl 12506 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )

Proof of Theorem tgclb
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 12506 . 2  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
2 df-topgen 12414 . . . . . . . . . . . . 13  |-  topGen  =  ( x  e.  _V  |->  { y  |  y  C_  U. ( x  i^i  ~P y ) } )
32funmpt2 5210 . . . . . . . . . . . 12  |-  Fun  topGen
4 funrel 5188 . . . . . . . . . . . 12  |-  ( Fun  topGen  ->  Rel  topGen )
53, 4ax-mp 5 . . . . . . . . . . 11  |-  Rel  topGen
6 0opn 12446 . . . . . . . . . . 11  |-  ( (
topGen `  B )  e. 
Top  ->  (/)  e.  ( topGen `  B ) )
7 relelfvdm 5501 . . . . . . . . . . 11  |-  ( ( Rel  topGen  /\  (/)  e.  (
topGen `  B ) )  ->  B  e.  dom  topGen )
85, 6, 7sylancr 411 . . . . . . . . . 10  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  dom  topGen )
98elexd 2725 . . . . . . . . 9  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  _V )
10 bastg 12503 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  C_  ( topGen `  B )
)
119, 10syl 14 . . . . . . . 8  |-  ( (
topGen `  B )  e. 
Top  ->  B  C_  ( topGen `
 B ) )
1211sselda 3128 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  B )  ->  x  e.  ( topGen `  B )
)
1311sselda 3128 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  y  e.  B )  ->  y  e.  ( topGen `  B )
)
1412, 13anim12dan 590 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) ) )
15 inopn 12443 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  ( topGen `  B )  /\  y  e.  ( topGen `
 B ) )  ->  ( x  i^i  y )  e.  (
topGen `  B ) )
16153expb 1186 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  ( topGen `  B
)  /\  y  e.  ( topGen `  B )
) )  ->  (
x  i^i  y )  e.  ( topGen `  B )
)
1714, 16syldan 280 . . . . 5  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  i^i  y
)  e.  ( topGen `  B ) )
18 tg2 12502 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  ( topGen `  B )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1918ralrimiva 2530 . . . . 5  |-  ( ( x  i^i  y )  e.  ( topGen `  B
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
2017, 19syl 14 . . . 4  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
2120ralrimivva 2539 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
22 isbasis2g 12485 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
239, 22syl 14 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
2421, 23mpbird 166 . 2  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  TopBases )
251, 24impbii 125 1  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2128   {cab 2143   A.wral 2435   E.wrex 2436   _Vcvv 2712    i^i cin 3101    C_ wss 3102   (/)c0 3394   ~Pcpw 3543   U.cuni 3773   dom cdm 4587   Rel wrel 4592   Fun wfun 5165   ` cfv 5171   topGenctg 12408   Topctop 12437   TopBasesctb 12482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-iota 5136  df-fun 5173  df-fv 5179  df-topgen 12414  df-top 12438  df-bases 12483
This theorem is referenced by:  bastop2  12526  tgcn  12650  tgcnp  12651
  Copyright terms: Public domain W3C validator