ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  innei Unicode version

Theorem innei 12364
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem innei
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . . . 5  |-  U. J  =  U. J
21neii1 12348 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
3 ssinss1 3308 . . . 4  |-  ( N 
C_  U. J  ->  ( N  i^i  M )  C_  U. J )
42, 3syl 14 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( N  i^i  M
)  C_  U. J )
543adant3 1002 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  C_  U. J
)
6 neii2 12350 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
7 neii2 12350 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  S ) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) )
86, 7anim12dan 590 . . . 4  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )
9 inopn 12202 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  h  e.  J  /\  v  e.  J )  ->  ( h  i^i  v
)  e.  J )
1093expa 1182 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  v  e.  J
)  ->  ( h  i^i  v )  e.  J
)
11 ssin 3301 . . . . . . . . . . . . 13  |-  ( ( S  C_  h  /\  S  C_  v )  <->  S  C_  (
h  i^i  v )
)
1211biimpi 119 . . . . . . . . . . . 12  |-  ( ( S  C_  h  /\  S  C_  v )  ->  S  C_  ( h  i^i  v ) )
13 ss2in 3307 . . . . . . . . . . . 12  |-  ( ( h  C_  N  /\  v  C_  M )  -> 
( h  i^i  v
)  C_  ( N  i^i  M ) )
1412, 13anim12i 336 . . . . . . . . . . 11  |-  ( ( ( S  C_  h  /\  S  C_  v )  /\  ( h  C_  N  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
1514an4s 578 . . . . . . . . . 10  |-  ( ( ( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
16 sseq2 3124 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  ( S  C_  g  <->  S  C_  (
h  i^i  v )
) )
17 sseq1 3123 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  (
g  C_  ( N  i^i  M )  <->  ( h  i^i  v )  C_  ( N  i^i  M ) ) )
1816, 17anbi12d 465 . . . . . . . . . . 11  |-  ( g  =  ( h  i^i  v )  ->  (
( S  C_  g  /\  g  C_  ( N  i^i  M ) )  <-> 
( S  C_  (
h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) ) )
1918rspcev 2792 . . . . . . . . . 10  |-  ( ( ( h  i^i  v
)  e.  J  /\  ( S  C_  ( h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2010, 15, 19syl2an 287 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  (
( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2120expr 373 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  -> 
( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2221an32s 558 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  /\  v  e.  J )  ->  ( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2322rexlimdva 2552 . . . . . 6  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N
) )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2423rexlimdva2 2555 . . . . 5  |-  ( J  e.  Top  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  -> 
( E. v  e.  J  ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2524imp32 255 . . . 4  |-  ( ( J  e.  Top  /\  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
268, 25syldan 280 . . 3  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
27263impb 1178 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
281neiss2 12343 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
291isnei 12345 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
3028, 29syldan 280 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( ( N  i^i  M )  e.  ( ( nei `  J ) `
 S )  <->  ( ( N  i^i  M )  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
31303adant3 1002 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
325, 27, 31mpbir2and 929 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418    i^i cin 3073    C_ wss 3074   U.cuni 3742   ` cfv 5129   Topctop 12196   neicnei 12339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-top 12197  df-nei 12340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator