ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  innei Unicode version

Theorem innei 12704
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem innei
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2164 . . . . 5  |-  U. J  =  U. J
21neii1 12688 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
3 ssinss1 3346 . . . 4  |-  ( N 
C_  U. J  ->  ( N  i^i  M )  C_  U. J )
42, 3syl 14 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( N  i^i  M
)  C_  U. J )
543adant3 1006 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  C_  U. J
)
6 neii2 12690 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
7 neii2 12690 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  S ) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) )
86, 7anim12dan 590 . . . 4  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )
9 inopn 12542 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  h  e.  J  /\  v  e.  J )  ->  ( h  i^i  v
)  e.  J )
1093expa 1192 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  v  e.  J
)  ->  ( h  i^i  v )  e.  J
)
11 ssin 3339 . . . . . . . . . . . . 13  |-  ( ( S  C_  h  /\  S  C_  v )  <->  S  C_  (
h  i^i  v )
)
1211biimpi 119 . . . . . . . . . . . 12  |-  ( ( S  C_  h  /\  S  C_  v )  ->  S  C_  ( h  i^i  v ) )
13 ss2in 3345 . . . . . . . . . . . 12  |-  ( ( h  C_  N  /\  v  C_  M )  -> 
( h  i^i  v
)  C_  ( N  i^i  M ) )
1412, 13anim12i 336 . . . . . . . . . . 11  |-  ( ( ( S  C_  h  /\  S  C_  v )  /\  ( h  C_  N  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
1514an4s 578 . . . . . . . . . 10  |-  ( ( ( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) )  ->  ( S  C_  ( h  i^i  v )  /\  (
h  i^i  v )  C_  ( N  i^i  M
) ) )
16 sseq2 3161 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  ( S  C_  g  <->  S  C_  (
h  i^i  v )
) )
17 sseq1 3160 . . . . . . . . . . . 12  |-  ( g  =  ( h  i^i  v )  ->  (
g  C_  ( N  i^i  M )  <->  ( h  i^i  v )  C_  ( N  i^i  M ) ) )
1816, 17anbi12d 465 . . . . . . . . . . 11  |-  ( g  =  ( h  i^i  v )  ->  (
( S  C_  g  /\  g  C_  ( N  i^i  M ) )  <-> 
( S  C_  (
h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) ) )
1918rspcev 2825 . . . . . . . . . 10  |-  ( ( ( h  i^i  v
)  e.  J  /\  ( S  C_  ( h  i^i  v )  /\  ( h  i^i  v
)  C_  ( N  i^i  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2010, 15, 19syl2an 287 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  (
( S  C_  h  /\  h  C_  N )  /\  ( S  C_  v  /\  v  C_  M
) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
2120expr 373 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  v  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  -> 
( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2221an32s 558 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N ) )  /\  v  e.  J )  ->  ( ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2322rexlimdva 2581 . . . . . 6  |-  ( ( ( J  e.  Top  /\  h  e.  J )  /\  ( S  C_  h  /\  h  C_  N
) )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  M )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) )
2423rexlimdva2 2584 . . . . 5  |-  ( J  e.  Top  ->  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  -> 
( E. v  e.  J  ( S  C_  v  /\  v  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
2524imp32 255 . . . 4  |-  ( ( J  e.  Top  /\  ( E. h  e.  J  ( S  C_  h  /\  h  C_  N )  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  M ) ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
268, 25syldan 280 . . 3  |-  ( ( J  e.  Top  /\  ( N  e.  (
( nei `  J
) `  S )  /\  M  e.  (
( nei `  J
) `  S )
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
27263impb 1188 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) )
281neiss2 12683 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
291isnei 12685 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
3028, 29syldan 280 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( ( N  i^i  M )  e.  ( ( nei `  J ) `
 S )  <->  ( ( N  i^i  M )  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
31303adant3 1006 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( ( N  i^i  M )  e.  ( ( nei `  J
) `  S )  <->  ( ( N  i^i  M
)  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  ( N  i^i  M ) ) ) ) )
325, 27, 31mpbir2and 933 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J
) `  S )
)  ->  ( N  i^i  M )  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   E.wrex 2443    i^i cin 3110    C_ wss 3111   U.cuni 3783   ` cfv 5182   Topctop 12536   neicnei 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-top 12537  df-nei 12680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator