Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > innei | Unicode version |
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.) |
Ref | Expression |
---|---|
innei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . . 5 | |
2 | 1 | neii1 12797 | . . . 4 |
3 | ssinss1 3351 | . . . 4 | |
4 | 2, 3 | syl 14 | . . 3 |
5 | 4 | 3adant3 1007 | . 2 |
6 | neii2 12799 | . . . . 5 | |
7 | neii2 12799 | . . . . 5 | |
8 | 6, 7 | anim12dan 590 | . . . 4 |
9 | inopn 12651 | . . . . . . . . . . 11 | |
10 | 9 | 3expa 1193 | . . . . . . . . . 10 |
11 | ssin 3344 | . . . . . . . . . . . . 13 | |
12 | 11 | biimpi 119 | . . . . . . . . . . . 12 |
13 | ss2in 3350 | . . . . . . . . . . . 12 | |
14 | 12, 13 | anim12i 336 | . . . . . . . . . . 11 |
15 | 14 | an4s 578 | . . . . . . . . . 10 |
16 | sseq2 3166 | . . . . . . . . . . . 12 | |
17 | sseq1 3165 | . . . . . . . . . . . 12 | |
18 | 16, 17 | anbi12d 465 | . . . . . . . . . . 11 |
19 | 18 | rspcev 2830 | . . . . . . . . . 10 |
20 | 10, 15, 19 | syl2an 287 | . . . . . . . . 9 |
21 | 20 | expr 373 | . . . . . . . 8 |
22 | 21 | an32s 558 | . . . . . . 7 |
23 | 22 | rexlimdva 2583 | . . . . . 6 |
24 | 23 | rexlimdva2 2586 | . . . . 5 |
25 | 24 | imp32 255 | . . . 4 |
26 | 8, 25 | syldan 280 | . . 3 |
27 | 26 | 3impb 1189 | . 2 |
28 | 1 | neiss2 12792 | . . . 4 |
29 | 1 | isnei 12794 | . . . 4 |
30 | 28, 29 | syldan 280 | . . 3 |
31 | 30 | 3adant3 1007 | . 2 |
32 | 5, 27, 31 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2445 cin 3115 wss 3116 cuni 3789 cfv 5188 ctop 12645 cnei 12788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12646 df-nei 12789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |