Proof of Theorem invrpropdg
| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. . . 4
 Unit  Unit    |
| 2 | | eqidd 2197 |
. . . 4
  mulGrp  ↾s Unit    mulGrp 
↾s Unit     |
| 3 | | unitpropdg.k |
. . . . 5
   |
| 4 | | ringsrg 13603 |
. . . . 5

SRing |
| 5 | 3, 4 | syl 14 |
. . . 4
 SRing |
| 6 | 1, 2, 5 | unitgrpbasd 13671 |
. . 3
 Unit      mulGrp  ↾s Unit      |
| 7 | | unitpropdg.1 |
. . . . 5
       |
| 8 | | unitpropdg.2 |
. . . . 5
       |
| 9 | | unitpropdg.3 |
. . . . 5
 

                    |
| 10 | | unitpropdg.l |
. . . . 5
   |
| 11 | 7, 8, 9, 3, 10 | unitpropdg 13704 |
. . . 4
 Unit  Unit    |
| 12 | | eqidd 2197 |
. . . . 5
 Unit  Unit    |
| 13 | | eqidd 2197 |
. . . . 5
  mulGrp  ↾s Unit    mulGrp 
↾s Unit     |
| 14 | | ringsrg 13603 |
. . . . . 6

SRing |
| 15 | 10, 14 | syl 14 |
. . . . 5
 SRing |
| 16 | 12, 13, 15 | unitgrpbasd 13671 |
. . . 4
 Unit      mulGrp  ↾s Unit      |
| 17 | 11, 16 | eqtrd 2229 |
. . 3
 Unit      mulGrp  ↾s Unit      |
| 18 | | eqid 2196 |
. . . . . 6
mulGrp  mulGrp   |
| 19 | 18 | ringmgp 13558 |
. . . . 5

mulGrp    |
| 20 | 3, 19 | syl 14 |
. . . 4
 mulGrp    |
| 21 | | basfn 12736 |
. . . . . . 7
 |
| 22 | 3 | elexd 2776 |
. . . . . . 7
   |
| 23 | | funfvex 5575 |
. . . . . . . 8
 
       |
| 24 | 23 | funfni 5358 |
. . . . . . 7
 
       |
| 25 | 21, 22, 24 | sylancr 414 |
. . . . . 6
       |
| 26 | 7, 25 | eqeltrd 2273 |
. . . . 5
   |
| 27 | 7, 1, 5 | unitssd 13665 |
. . . . 5
 Unit    |
| 28 | 26, 27 | ssexd 4173 |
. . . 4
 Unit    |
| 29 | | ressex 12743 |
. . . 4
  mulGrp  Unit    mulGrp 
↾s Unit     |
| 30 | 20, 28, 29 | syl2anc 411 |
. . 3
  mulGrp  ↾s Unit     |
| 31 | | eqid 2196 |
. . . . . 6
mulGrp  mulGrp   |
| 32 | 31 | ringmgp 13558 |
. . . . 5

mulGrp    |
| 33 | 10, 32 | syl 14 |
. . . 4
 mulGrp    |
| 34 | 11, 28 | eqeltrrd 2274 |
. . . 4
 Unit    |
| 35 | | ressex 12743 |
. . . 4
  mulGrp  Unit    mulGrp 
↾s Unit     |
| 36 | 33, 34, 35 | syl2anc 411 |
. . 3
  mulGrp  ↾s Unit     |
| 37 | 27 | sselda 3183 |
. . . . . 6
 
Unit     |
| 38 | 27 | sselda 3183 |
. . . . . 6
 
Unit     |
| 39 | 37, 38 | anim12dan 600 |
. . . . 5
 
 Unit 
Unit        |
| 40 | 39, 9 | syldan 282 |
. . . 4
 
 Unit 
Unit                      |
| 41 | | eqid 2196 |
. . . . . . . 8
         |
| 42 | 18, 41 | mgpplusgg 13480 |
. . . . . . 7

      mulGrp     |
| 43 | 3, 42 | syl 14 |
. . . . . 6
       mulGrp     |
| 44 | 2, 43, 28, 20 | ressplusgd 12806 |
. . . . 5
        mulGrp  ↾s Unit      |
| 45 | 44 | oveqdr 5950 |
. . . 4
 
 Unit 
Unit                 mulGrp  ↾s Unit        |
| 46 | | eqid 2196 |
. . . . . . . 8
         |
| 47 | 31, 46 | mgpplusgg 13480 |
. . . . . . 7

      mulGrp     |
| 48 | 10, 47 | syl 14 |
. . . . . 6
       mulGrp     |
| 49 | 13, 48, 34, 33 | ressplusgd 12806 |
. . . . 5
        mulGrp  ↾s Unit      |
| 50 | 49 | oveqdr 5950 |
. . . 4
 
 Unit 
Unit                 mulGrp  ↾s Unit        |
| 51 | 40, 45, 50 | 3eqtr3d 2237 |
. . 3
 
 Unit 
Unit         mulGrp 
↾s Unit           mulGrp 
↾s Unit        |
| 52 | 6, 17, 30, 36, 51 | grpinvpropdg 13207 |
. 2
      mulGrp  ↾s Unit         mulGrp  ↾s Unit      |
| 53 | | eqidd 2197 |
. . 3
           |
| 54 | 1, 2, 53, 3 | invrfvald 13678 |
. 2
          mulGrp 
↾s Unit      |
| 55 | | eqidd 2197 |
. . 3
           |
| 56 | 12, 13, 55, 10 | invrfvald 13678 |
. 2
          mulGrp 
↾s Unit      |
| 57 | 52, 54, 56 | 3eqtr4d 2239 |
1
           |