Proof of Theorem invrpropdg
Step | Hyp | Ref
| Expression |
1 | | eqidd 2194 |
. . . 4
 Unit  Unit    |
2 | | eqidd 2194 |
. . . 4
  mulGrp  ↾s Unit    mulGrp 
↾s Unit     |
3 | | unitpropdg.k |
. . . . 5
   |
4 | | ringsrg 13543 |
. . . . 5

SRing |
5 | 3, 4 | syl 14 |
. . . 4
 SRing |
6 | 1, 2, 5 | unitgrpbasd 13611 |
. . 3
 Unit      mulGrp  ↾s Unit      |
7 | | unitpropdg.1 |
. . . . 5
       |
8 | | unitpropdg.2 |
. . . . 5
       |
9 | | unitpropdg.3 |
. . . . 5
 

                    |
10 | | unitpropdg.l |
. . . . 5
   |
11 | 7, 8, 9, 3, 10 | unitpropdg 13644 |
. . . 4
 Unit  Unit    |
12 | | eqidd 2194 |
. . . . 5
 Unit  Unit    |
13 | | eqidd 2194 |
. . . . 5
  mulGrp  ↾s Unit    mulGrp 
↾s Unit     |
14 | | ringsrg 13543 |
. . . . . 6

SRing |
15 | 10, 14 | syl 14 |
. . . . 5
 SRing |
16 | 12, 13, 15 | unitgrpbasd 13611 |
. . . 4
 Unit      mulGrp  ↾s Unit      |
17 | 11, 16 | eqtrd 2226 |
. . 3
 Unit      mulGrp  ↾s Unit      |
18 | | eqid 2193 |
. . . . . 6
mulGrp  mulGrp   |
19 | 18 | ringmgp 13498 |
. . . . 5

mulGrp    |
20 | 3, 19 | syl 14 |
. . . 4
 mulGrp    |
21 | | basfn 12676 |
. . . . . . 7
 |
22 | 3 | elexd 2773 |
. . . . . . 7
   |
23 | | funfvex 5571 |
. . . . . . . 8
 
       |
24 | 23 | funfni 5354 |
. . . . . . 7
 
       |
25 | 21, 22, 24 | sylancr 414 |
. . . . . 6
       |
26 | 7, 25 | eqeltrd 2270 |
. . . . 5
   |
27 | 7, 1, 5 | unitssd 13605 |
. . . . 5
 Unit    |
28 | 26, 27 | ssexd 4169 |
. . . 4
 Unit    |
29 | | ressex 12683 |
. . . 4
  mulGrp  Unit    mulGrp 
↾s Unit     |
30 | 20, 28, 29 | syl2anc 411 |
. . 3
  mulGrp  ↾s Unit     |
31 | | eqid 2193 |
. . . . . 6
mulGrp  mulGrp   |
32 | 31 | ringmgp 13498 |
. . . . 5

mulGrp    |
33 | 10, 32 | syl 14 |
. . . 4
 mulGrp    |
34 | 11, 28 | eqeltrrd 2271 |
. . . 4
 Unit    |
35 | | ressex 12683 |
. . . 4
  mulGrp  Unit    mulGrp 
↾s Unit     |
36 | 33, 34, 35 | syl2anc 411 |
. . 3
  mulGrp  ↾s Unit     |
37 | 27 | sselda 3179 |
. . . . . 6
 
Unit     |
38 | 27 | sselda 3179 |
. . . . . 6
 
Unit     |
39 | 37, 38 | anim12dan 600 |
. . . . 5
 
 Unit 
Unit        |
40 | 39, 9 | syldan 282 |
. . . 4
 
 Unit 
Unit                      |
41 | | eqid 2193 |
. . . . . . . 8
         |
42 | 18, 41 | mgpplusgg 13420 |
. . . . . . 7

      mulGrp     |
43 | 3, 42 | syl 14 |
. . . . . 6
       mulGrp     |
44 | 2, 43, 28, 20 | ressplusgd 12746 |
. . . . 5
        mulGrp  ↾s Unit      |
45 | 44 | oveqdr 5946 |
. . . 4
 
 Unit 
Unit                 mulGrp  ↾s Unit        |
46 | | eqid 2193 |
. . . . . . . 8
         |
47 | 31, 46 | mgpplusgg 13420 |
. . . . . . 7

      mulGrp     |
48 | 10, 47 | syl 14 |
. . . . . 6
       mulGrp     |
49 | 13, 48, 34, 33 | ressplusgd 12746 |
. . . . 5
        mulGrp  ↾s Unit      |
50 | 49 | oveqdr 5946 |
. . . 4
 
 Unit 
Unit                 mulGrp  ↾s Unit        |
51 | 40, 45, 50 | 3eqtr3d 2234 |
. . 3
 
 Unit 
Unit         mulGrp 
↾s Unit           mulGrp 
↾s Unit        |
52 | 6, 17, 30, 36, 51 | grpinvpropdg 13147 |
. 2
      mulGrp  ↾s Unit         mulGrp  ↾s Unit      |
53 | | eqidd 2194 |
. . 3
           |
54 | 1, 2, 53, 3 | invrfvald 13618 |
. 2
          mulGrp 
↾s Unit      |
55 | | eqidd 2194 |
. . 3
           |
56 | 12, 13, 55, 10 | invrfvald 13618 |
. 2
          mulGrp 
↾s Unit      |
57 | 52, 54, 56 | 3eqtr4d 2236 |
1
           |