ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg Unicode version

Theorem invrpropdg 13316
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
unitpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
unitpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
unitpropdg.k  |-  ( ph  ->  K  e.  Ring )
unitpropdg.l  |-  ( ph  ->  L  e.  Ring )
Assertion
Ref Expression
invrpropdg  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2178 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  K )
)
2 eqidd 2178 . . . 4  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  =  ( (mulGrp `  K )s  (Unit `  K )
) )
3 unitpropdg.k . . . . 5  |-  ( ph  ->  K  e.  Ring )
4 ringsrg 13222 . . . . 5  |-  ( K  e.  Ring  ->  K  e. SRing
)
53, 4syl 14 . . . 4  |-  ( ph  ->  K  e. SRing )
61, 2, 5unitgrpbasd 13282 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  K )s  (Unit `  K ) ) ) )
7 unitpropdg.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
8 unitpropdg.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
9 unitpropdg.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
10 unitpropdg.l . . . . 5  |-  ( ph  ->  L  e.  Ring )
117, 8, 9, 3, 10unitpropdg 13315 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
12 eqidd 2178 . . . . 5  |-  ( ph  ->  (Unit `  L )  =  (Unit `  L )
)
13 eqidd 2178 . . . . 5  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  =  ( (mulGrp `  L )s  (Unit `  L )
) )
14 ringsrg 13222 . . . . . 6  |-  ( L  e.  Ring  ->  L  e. SRing
)
1510, 14syl 14 . . . . 5  |-  ( ph  ->  L  e. SRing )
1612, 13, 15unitgrpbasd 13282 . . . 4  |-  ( ph  ->  (Unit `  L )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
1711, 16eqtrd 2210 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
18 eqid 2177 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
1918ringmgp 13183 . . . . 5  |-  ( K  e.  Ring  ->  (mulGrp `  K )  e.  Mnd )
203, 19syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  K )  e.  Mnd )
21 basfn 12519 . . . . . . 7  |-  Base  Fn  _V
223elexd 2750 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
23 funfvex 5532 . . . . . . . 8  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
2423funfni 5316 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
2521, 22, 24sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  K
)  e.  _V )
267, 25eqeltrd 2254 . . . . 5  |-  ( ph  ->  B  e.  _V )
277, 1, 5unitssd 13276 . . . . 5  |-  ( ph  ->  (Unit `  K )  C_  B )
2826, 27ssexd 4143 . . . 4  |-  ( ph  ->  (Unit `  K )  e.  _V )
29 ressex 12524 . . . 4  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  (Unit `  K )  e.  _V )  ->  ( (mulGrp `  K )s  (Unit `  K )
)  e.  _V )
3020, 28, 29syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  e.  _V )
31 eqid 2177 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
3231ringmgp 13183 . . . . 5  |-  ( L  e.  Ring  ->  (mulGrp `  L )  e.  Mnd )
3310, 32syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  L )  e.  Mnd )
3411, 28eqeltrrd 2255 . . . 4  |-  ( ph  ->  (Unit `  L )  e.  _V )
35 ressex 12524 . . . 4  |-  ( ( (mulGrp `  L )  e.  Mnd  /\  (Unit `  L )  e.  _V )  ->  ( (mulGrp `  L )s  (Unit `  L )
)  e.  _V )
3633, 34, 35syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  e.  _V )
3727sselda 3155 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  K ) )  ->  x  e.  B
)
3827sselda 3155 . . . . . 6  |-  ( (
ph  /\  y  e.  (Unit `  K ) )  ->  y  e.  B
)
3937, 38anim12dan 600 . . . . 5  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x  e.  B  /\  y  e.  B ) )
4039, 9syldan 282 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
41 eqid 2177 . . . . . . . 8  |-  ( .r
`  K )  =  ( .r `  K
)
4218, 41mgpplusgg 13132 . . . . . . 7  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
433, 42syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
442, 43, 28, 20ressplusgd 12586 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  ( (mulGrp `  K
)s  (Unit `  K )
) ) )
4544oveqdr 5902 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( +g  `  (
(mulGrp `  K )s  (Unit `  K ) ) ) y ) )
46 eqid 2177 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
4731, 46mgpplusgg 13132 . . . . . . 7  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
4810, 47syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
4913, 48, 34, 33ressplusgd 12586 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
5049oveqdr 5902 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  L ) y )  =  ( x ( +g  `  (
(mulGrp `  L )s  (Unit `  L ) ) ) y ) )
5140, 45, 503eqtr3d 2218 . . 3  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( +g  `  ( (mulGrp `  K )s  (Unit `  K )
) ) y )  =  ( x ( +g  `  ( (mulGrp `  L )s  (Unit `  L )
) ) y ) )
526, 17, 30, 36, 51grpinvpropdg 12944 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  K )s  (Unit `  K ) ) )  =  ( invg `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
53 eqidd 2178 . . 3  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  K ) )
541, 2, 53, 3invrfvald 13289 . 2  |-  ( ph  ->  ( invr `  K
)  =  ( invg `  ( (mulGrp `  K )s  (Unit `  K )
) ) )
55 eqidd 2178 . . 3  |-  ( ph  ->  ( invr `  L
)  =  ( invr `  L ) )
5612, 13, 55, 10invrfvald 13289 . 2  |-  ( ph  ->  ( invr `  L
)  =  ( invg `  ( (mulGrp `  L )s  (Unit `  L )
) ) )
5752, 54, 563eqtr4d 2220 1  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2737    Fn wfn 5211   ` cfv 5216  (class class class)co 5874   Basecbs 12461   ↾s cress 12462   +g cplusg 12535   .rcmulr 12536   Mndcmnd 12816   invgcminusg 12877  mulGrpcmgp 13128  SRingcsrg 13144   Ringcrg 13177  Unitcui 13254   invrcinvr 13287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-iress 12469  df-plusg 12548  df-mulr 12549  df-0g 12706  df-mgm 12774  df-sgrp 12807  df-mnd 12817  df-grp 12879  df-minusg 12880  df-cmn 13088  df-abl 13089  df-mgp 13129  df-ur 13141  df-srg 13145  df-ring 13179  df-oppr 13238  df-dvdsr 13256  df-unit 13257  df-invr 13288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator