ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg Unicode version

Theorem invrpropdg 14113
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
unitpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
unitpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
unitpropdg.k  |-  ( ph  ->  K  e.  Ring )
unitpropdg.l  |-  ( ph  ->  L  e.  Ring )
Assertion
Ref Expression
invrpropdg  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2230 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  K )
)
2 eqidd 2230 . . . 4  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  =  ( (mulGrp `  K )s  (Unit `  K )
) )
3 unitpropdg.k . . . . 5  |-  ( ph  ->  K  e.  Ring )
4 ringsrg 14010 . . . . 5  |-  ( K  e.  Ring  ->  K  e. SRing
)
53, 4syl 14 . . . 4  |-  ( ph  ->  K  e. SRing )
61, 2, 5unitgrpbasd 14079 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  K )s  (Unit `  K ) ) ) )
7 unitpropdg.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
8 unitpropdg.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
9 unitpropdg.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
10 unitpropdg.l . . . . 5  |-  ( ph  ->  L  e.  Ring )
117, 8, 9, 3, 10unitpropdg 14112 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
12 eqidd 2230 . . . . 5  |-  ( ph  ->  (Unit `  L )  =  (Unit `  L )
)
13 eqidd 2230 . . . . 5  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  =  ( (mulGrp `  L )s  (Unit `  L )
) )
14 ringsrg 14010 . . . . . 6  |-  ( L  e.  Ring  ->  L  e. SRing
)
1510, 14syl 14 . . . . 5  |-  ( ph  ->  L  e. SRing )
1612, 13, 15unitgrpbasd 14079 . . . 4  |-  ( ph  ->  (Unit `  L )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
1711, 16eqtrd 2262 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
18 eqid 2229 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
1918ringmgp 13965 . . . . 5  |-  ( K  e.  Ring  ->  (mulGrp `  K )  e.  Mnd )
203, 19syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  K )  e.  Mnd )
21 basfn 13091 . . . . . . 7  |-  Base  Fn  _V
223elexd 2813 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
23 funfvex 5644 . . . . . . . 8  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
2423funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
2521, 22, 24sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  K
)  e.  _V )
267, 25eqeltrd 2306 . . . . 5  |-  ( ph  ->  B  e.  _V )
277, 1, 5unitssd 14073 . . . . 5  |-  ( ph  ->  (Unit `  K )  C_  B )
2826, 27ssexd 4224 . . . 4  |-  ( ph  ->  (Unit `  K )  e.  _V )
29 ressex 13098 . . . 4  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  (Unit `  K )  e.  _V )  ->  ( (mulGrp `  K )s  (Unit `  K )
)  e.  _V )
3020, 28, 29syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  e.  _V )
31 eqid 2229 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
3231ringmgp 13965 . . . . 5  |-  ( L  e.  Ring  ->  (mulGrp `  L )  e.  Mnd )
3310, 32syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  L )  e.  Mnd )
3411, 28eqeltrrd 2307 . . . 4  |-  ( ph  ->  (Unit `  L )  e.  _V )
35 ressex 13098 . . . 4  |-  ( ( (mulGrp `  L )  e.  Mnd  /\  (Unit `  L )  e.  _V )  ->  ( (mulGrp `  L )s  (Unit `  L )
)  e.  _V )
3633, 34, 35syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  e.  _V )
3727sselda 3224 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  K ) )  ->  x  e.  B
)
3827sselda 3224 . . . . . 6  |-  ( (
ph  /\  y  e.  (Unit `  K ) )  ->  y  e.  B
)
3937, 38anim12dan 602 . . . . 5  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x  e.  B  /\  y  e.  B ) )
4039, 9syldan 282 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
41 eqid 2229 . . . . . . . 8  |-  ( .r
`  K )  =  ( .r `  K
)
4218, 41mgpplusgg 13887 . . . . . . 7  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
433, 42syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
442, 43, 28, 20ressplusgd 13162 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  ( (mulGrp `  K
)s  (Unit `  K )
) ) )
4544oveqdr 6029 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( +g  `  (
(mulGrp `  K )s  (Unit `  K ) ) ) y ) )
46 eqid 2229 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
4731, 46mgpplusgg 13887 . . . . . . 7  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
4810, 47syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
4913, 48, 34, 33ressplusgd 13162 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
5049oveqdr 6029 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  L ) y )  =  ( x ( +g  `  (
(mulGrp `  L )s  (Unit `  L ) ) ) y ) )
5140, 45, 503eqtr3d 2270 . . 3  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( +g  `  ( (mulGrp `  K )s  (Unit `  K )
) ) y )  =  ( x ( +g  `  ( (mulGrp `  L )s  (Unit `  L )
) ) y ) )
526, 17, 30, 36, 51grpinvpropdg 13608 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  K )s  (Unit `  K ) ) )  =  ( invg `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
53 eqidd 2230 . . 3  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  K ) )
541, 2, 53, 3invrfvald 14086 . 2  |-  ( ph  ->  ( invr `  K
)  =  ( invg `  ( (mulGrp `  K )s  (Unit `  K )
) ) )
55 eqidd 2230 . . 3  |-  ( ph  ->  ( invr `  L
)  =  ( invr `  L ) )
5612, 13, 55, 10invrfvald 14086 . 2  |-  ( ph  ->  ( invr `  L
)  =  ( invg `  ( (mulGrp `  L )s  (Unit `  L )
) ) )
5752, 54, 563eqtr4d 2272 1  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   .rcmulr 13111   Mndcmnd 13449   invgcminusg 13534  mulGrpcmgp 13883  SRingcsrg 13926   Ringcrg 13959  Unitcui 14050   invrcinvr 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053  df-invr 14085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator