ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg Unicode version

Theorem invrpropdg 14026
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
unitpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
unitpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
unitpropdg.k  |-  ( ph  ->  K  e.  Ring )
unitpropdg.l  |-  ( ph  ->  L  e.  Ring )
Assertion
Ref Expression
invrpropdg  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2208 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  K )
)
2 eqidd 2208 . . . 4  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  =  ( (mulGrp `  K )s  (Unit `  K )
) )
3 unitpropdg.k . . . . 5  |-  ( ph  ->  K  e.  Ring )
4 ringsrg 13924 . . . . 5  |-  ( K  e.  Ring  ->  K  e. SRing
)
53, 4syl 14 . . . 4  |-  ( ph  ->  K  e. SRing )
61, 2, 5unitgrpbasd 13992 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  K )s  (Unit `  K ) ) ) )
7 unitpropdg.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
8 unitpropdg.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
9 unitpropdg.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
10 unitpropdg.l . . . . 5  |-  ( ph  ->  L  e.  Ring )
117, 8, 9, 3, 10unitpropdg 14025 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
12 eqidd 2208 . . . . 5  |-  ( ph  ->  (Unit `  L )  =  (Unit `  L )
)
13 eqidd 2208 . . . . 5  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  =  ( (mulGrp `  L )s  (Unit `  L )
) )
14 ringsrg 13924 . . . . . 6  |-  ( L  e.  Ring  ->  L  e. SRing
)
1510, 14syl 14 . . . . 5  |-  ( ph  ->  L  e. SRing )
1612, 13, 15unitgrpbasd 13992 . . . 4  |-  ( ph  ->  (Unit `  L )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
1711, 16eqtrd 2240 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
18 eqid 2207 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
1918ringmgp 13879 . . . . 5  |-  ( K  e.  Ring  ->  (mulGrp `  K )  e.  Mnd )
203, 19syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  K )  e.  Mnd )
21 basfn 13005 . . . . . . 7  |-  Base  Fn  _V
223elexd 2790 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
23 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
2423funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
2521, 22, 24sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  K
)  e.  _V )
267, 25eqeltrd 2284 . . . . 5  |-  ( ph  ->  B  e.  _V )
277, 1, 5unitssd 13986 . . . . 5  |-  ( ph  ->  (Unit `  K )  C_  B )
2826, 27ssexd 4200 . . . 4  |-  ( ph  ->  (Unit `  K )  e.  _V )
29 ressex 13012 . . . 4  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  (Unit `  K )  e.  _V )  ->  ( (mulGrp `  K )s  (Unit `  K )
)  e.  _V )
3020, 28, 29syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  e.  _V )
31 eqid 2207 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
3231ringmgp 13879 . . . . 5  |-  ( L  e.  Ring  ->  (mulGrp `  L )  e.  Mnd )
3310, 32syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  L )  e.  Mnd )
3411, 28eqeltrrd 2285 . . . 4  |-  ( ph  ->  (Unit `  L )  e.  _V )
35 ressex 13012 . . . 4  |-  ( ( (mulGrp `  L )  e.  Mnd  /\  (Unit `  L )  e.  _V )  ->  ( (mulGrp `  L )s  (Unit `  L )
)  e.  _V )
3633, 34, 35syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  e.  _V )
3727sselda 3201 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  K ) )  ->  x  e.  B
)
3827sselda 3201 . . . . . 6  |-  ( (
ph  /\  y  e.  (Unit `  K ) )  ->  y  e.  B
)
3937, 38anim12dan 600 . . . . 5  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x  e.  B  /\  y  e.  B ) )
4039, 9syldan 282 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
41 eqid 2207 . . . . . . . 8  |-  ( .r
`  K )  =  ( .r `  K
)
4218, 41mgpplusgg 13801 . . . . . . 7  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
433, 42syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
442, 43, 28, 20ressplusgd 13076 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  ( (mulGrp `  K
)s  (Unit `  K )
) ) )
4544oveqdr 5995 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( +g  `  (
(mulGrp `  K )s  (Unit `  K ) ) ) y ) )
46 eqid 2207 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
4731, 46mgpplusgg 13801 . . . . . . 7  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
4810, 47syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
4913, 48, 34, 33ressplusgd 13076 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
5049oveqdr 5995 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  L ) y )  =  ( x ( +g  `  (
(mulGrp `  L )s  (Unit `  L ) ) ) y ) )
5140, 45, 503eqtr3d 2248 . . 3  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( +g  `  ( (mulGrp `  K )s  (Unit `  K )
) ) y )  =  ( x ( +g  `  ( (mulGrp `  L )s  (Unit `  L )
) ) y ) )
526, 17, 30, 36, 51grpinvpropdg 13522 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  K )s  (Unit `  K ) ) )  =  ( invg `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
53 eqidd 2208 . . 3  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  K ) )
541, 2, 53, 3invrfvald 13999 . 2  |-  ( ph  ->  ( invr `  K
)  =  ( invg `  ( (mulGrp `  K )s  (Unit `  K )
) ) )
55 eqidd 2208 . . 3  |-  ( ph  ->  ( invr `  L
)  =  ( invr `  L ) )
5612, 13, 55, 10invrfvald 13999 . 2  |-  ( ph  ->  ( invr `  L
)  =  ( invg `  ( (mulGrp `  L )s  (Unit `  L )
) ) )
5752, 54, 563eqtr4d 2250 1  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025   Mndcmnd 13363   invgcminusg 13448  mulGrpcmgp 13797  SRingcsrg 13840   Ringcrg 13873  Unitcui 13964   invrcinvr 13997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967  df-invr 13998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator