ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg Unicode version

Theorem invrpropdg 13645
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
unitpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
unitpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
unitpropdg.k  |-  ( ph  ->  K  e.  Ring )
unitpropdg.l  |-  ( ph  ->  L  e.  Ring )
Assertion
Ref Expression
invrpropdg  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2194 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  K )
)
2 eqidd 2194 . . . 4  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  =  ( (mulGrp `  K )s  (Unit `  K )
) )
3 unitpropdg.k . . . . 5  |-  ( ph  ->  K  e.  Ring )
4 ringsrg 13543 . . . . 5  |-  ( K  e.  Ring  ->  K  e. SRing
)
53, 4syl 14 . . . 4  |-  ( ph  ->  K  e. SRing )
61, 2, 5unitgrpbasd 13611 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  K )s  (Unit `  K ) ) ) )
7 unitpropdg.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
8 unitpropdg.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
9 unitpropdg.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
10 unitpropdg.l . . . . 5  |-  ( ph  ->  L  e.  Ring )
117, 8, 9, 3, 10unitpropdg 13644 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
12 eqidd 2194 . . . . 5  |-  ( ph  ->  (Unit `  L )  =  (Unit `  L )
)
13 eqidd 2194 . . . . 5  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  =  ( (mulGrp `  L )s  (Unit `  L )
) )
14 ringsrg 13543 . . . . . 6  |-  ( L  e.  Ring  ->  L  e. SRing
)
1510, 14syl 14 . . . . 5  |-  ( ph  ->  L  e. SRing )
1612, 13, 15unitgrpbasd 13611 . . . 4  |-  ( ph  ->  (Unit `  L )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
1711, 16eqtrd 2226 . . 3  |-  ( ph  ->  (Unit `  K )  =  ( Base `  (
(mulGrp `  L )s  (Unit `  L ) ) ) )
18 eqid 2193 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
1918ringmgp 13498 . . . . 5  |-  ( K  e.  Ring  ->  (mulGrp `  K )  e.  Mnd )
203, 19syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  K )  e.  Mnd )
21 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
223elexd 2773 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
23 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
2423funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
2521, 22, 24sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  K
)  e.  _V )
267, 25eqeltrd 2270 . . . . 5  |-  ( ph  ->  B  e.  _V )
277, 1, 5unitssd 13605 . . . . 5  |-  ( ph  ->  (Unit `  K )  C_  B )
2826, 27ssexd 4169 . . . 4  |-  ( ph  ->  (Unit `  K )  e.  _V )
29 ressex 12683 . . . 4  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  (Unit `  K )  e.  _V )  ->  ( (mulGrp `  K )s  (Unit `  K )
)  e.  _V )
3020, 28, 29syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  K
)s  (Unit `  K )
)  e.  _V )
31 eqid 2193 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
3231ringmgp 13498 . . . . 5  |-  ( L  e.  Ring  ->  (mulGrp `  L )  e.  Mnd )
3310, 32syl 14 . . . 4  |-  ( ph  ->  (mulGrp `  L )  e.  Mnd )
3411, 28eqeltrrd 2271 . . . 4  |-  ( ph  ->  (Unit `  L )  e.  _V )
35 ressex 12683 . . . 4  |-  ( ( (mulGrp `  L )  e.  Mnd  /\  (Unit `  L )  e.  _V )  ->  ( (mulGrp `  L )s  (Unit `  L )
)  e.  _V )
3633, 34, 35syl2anc 411 . . 3  |-  ( ph  ->  ( (mulGrp `  L
)s  (Unit `  L )
)  e.  _V )
3727sselda 3179 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  K ) )  ->  x  e.  B
)
3827sselda 3179 . . . . . 6  |-  ( (
ph  /\  y  e.  (Unit `  K ) )  ->  y  e.  B
)
3937, 38anim12dan 600 . . . . 5  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x  e.  B  /\  y  e.  B ) )
4039, 9syldan 282 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
41 eqid 2193 . . . . . . . 8  |-  ( .r
`  K )  =  ( .r `  K
)
4218, 41mgpplusgg 13420 . . . . . . 7  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
433, 42syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
442, 43, 28, 20ressplusgd 12746 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  ( (mulGrp `  K
)s  (Unit `  K )
) ) )
4544oveqdr 5946 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  K ) y )  =  ( x ( +g  `  (
(mulGrp `  K )s  (Unit `  K ) ) ) y ) )
46 eqid 2193 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
4731, 46mgpplusgg 13420 . . . . . . 7  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
4810, 47syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
4913, 48, 34, 33ressplusgd 12746 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
5049oveqdr 5946 . . . 4  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( .r `  L ) y )  =  ( x ( +g  `  (
(mulGrp `  L )s  (Unit `  L ) ) ) y ) )
5140, 45, 503eqtr3d 2234 . . 3  |-  ( (
ph  /\  ( x  e.  (Unit `  K )  /\  y  e.  (Unit `  K ) ) )  ->  ( x ( +g  `  ( (mulGrp `  K )s  (Unit `  K )
) ) y )  =  ( x ( +g  `  ( (mulGrp `  L )s  (Unit `  L )
) ) y ) )
526, 17, 30, 36, 51grpinvpropdg 13147 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  K )s  (Unit `  K ) ) )  =  ( invg `  ( (mulGrp `  L
)s  (Unit `  L )
) ) )
53 eqidd 2194 . . 3  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  K ) )
541, 2, 53, 3invrfvald 13618 . 2  |-  ( ph  ->  ( invr `  K
)  =  ( invg `  ( (mulGrp `  K )s  (Unit `  K )
) ) )
55 eqidd 2194 . . 3  |-  ( ph  ->  ( invr `  L
)  =  ( invr `  L ) )
5612, 13, 55, 10invrfvald 13618 . 2  |-  ( ph  ->  ( invr `  L
)  =  ( invg `  ( (mulGrp `  L )s  (Unit `  L )
) ) )
5752, 54, 563eqtr4d 2236 1  |-  ( ph  ->  ( invr `  K
)  =  ( invr `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   .rcmulr 12696   Mndcmnd 12997   invgcminusg 13073  mulGrpcmgp 13416  SRingcsrg 13459   Ringcrg 13492  Unitcui 13583   invrcinvr 13616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator