Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem3 | Unicode version |
Description: Lemma for bj-inf2vn 13856. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem3.bd1 | BOUNDED |
bj-inf2vnlem3.bd2 | BOUNDED |
Ref | Expression |
---|---|
bj-inf2vnlem3 | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 13853 | . . 3 Ind | |
2 | bj-inf2vnlem3.bd1 | . . . . . 6 BOUNDED | |
3 | 2 | bdeli 13728 | . . . . 5 BOUNDED |
4 | bj-inf2vnlem3.bd2 | . . . . . 6 BOUNDED | |
5 | 4 | bdeli 13728 | . . . . 5 BOUNDED |
6 | 3, 5 | ax-bdim 13696 | . . . 4 BOUNDED |
7 | nfv 1516 | . . . 4 | |
8 | nfv 1516 | . . . 4 | |
9 | nfv 1516 | . . . 4 | |
10 | nfv 1516 | . . . 4 | |
11 | eleq1 2229 | . . . . . 6 | |
12 | eleq1 2229 | . . . . . 6 | |
13 | 11, 12 | imbi12d 233 | . . . . 5 |
14 | 13 | biimpd 143 | . . . 4 |
15 | eleq1 2229 | . . . . . 6 | |
16 | eleq1 2229 | . . . . . 6 | |
17 | 15, 16 | imbi12d 233 | . . . . 5 |
18 | 17 | biimprd 157 | . . . 4 |
19 | 6, 7, 8, 9, 10, 14, 18 | bdsetindis 13851 | . . 3 |
20 | 1, 19 | syl6 33 | . 2 Ind |
21 | dfss2 3131 | . 2 | |
22 | 20, 21 | syl6ibr 161 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wal 1341 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 c0 3409 csuc 4343 BOUNDED wbdc 13722 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bdim 13696 ax-bdsetind 13850 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-suc 4349 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-inf2vn 13856 |
Copyright terms: Public domain | W3C validator |