Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem3 | Unicode version |
Description: Lemma for bj-inf2vn 14009. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem3.bd1 | BOUNDED |
bj-inf2vnlem3.bd2 | BOUNDED |
Ref | Expression |
---|---|
bj-inf2vnlem3 | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 14006 | . . 3 Ind | |
2 | bj-inf2vnlem3.bd1 | . . . . . 6 BOUNDED | |
3 | 2 | bdeli 13881 | . . . . 5 BOUNDED |
4 | bj-inf2vnlem3.bd2 | . . . . . 6 BOUNDED | |
5 | 4 | bdeli 13881 | . . . . 5 BOUNDED |
6 | 3, 5 | ax-bdim 13849 | . . . 4 BOUNDED |
7 | nfv 1521 | . . . 4 | |
8 | nfv 1521 | . . . 4 | |
9 | nfv 1521 | . . . 4 | |
10 | nfv 1521 | . . . 4 | |
11 | eleq1 2233 | . . . . . 6 | |
12 | eleq1 2233 | . . . . . 6 | |
13 | 11, 12 | imbi12d 233 | . . . . 5 |
14 | 13 | biimpd 143 | . . . 4 |
15 | eleq1 2233 | . . . . . 6 | |
16 | eleq1 2233 | . . . . . 6 | |
17 | 15, 16 | imbi12d 233 | . . . . 5 |
18 | 17 | biimprd 157 | . . . 4 |
19 | 6, 7, 8, 9, 10, 14, 18 | bdsetindis 14004 | . . 3 |
20 | 1, 19 | syl6 33 | . 2 Ind |
21 | dfss2 3136 | . 2 | |
22 | 20, 21 | syl6ibr 161 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 703 wal 1346 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 c0 3414 csuc 4350 BOUNDED wbdc 13875 Ind wind 13961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bdim 13849 ax-bdsetind 14003 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-suc 4356 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-inf2vn 14009 |
Copyright terms: Public domain | W3C validator |