Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem3 Unicode version

Theorem bj-inf2vnlem3 16335
Description: Lemma for bj-inf2vn 16337. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-inf2vnlem3.bd1  |- BOUNDED  A
bj-inf2vnlem3.bd2  |- BOUNDED  Z
Assertion
Ref Expression
bj-inf2vnlem3  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A  C_  Z ) )
Distinct variable groups:    x, y, A   
x, Z, y

Proof of Theorem bj-inf2vnlem3
Dummy variables  z  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 16334 . . 3  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. u
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
) ) )
2 bj-inf2vnlem3.bd1 . . . . . 6  |- BOUNDED  A
32bdeli 16209 . . . . 5  |- BOUNDED  z  e.  A
4 bj-inf2vnlem3.bd2 . . . . . 6  |- BOUNDED  Z
54bdeli 16209 . . . . 5  |- BOUNDED  z  e.  Z
63, 5ax-bdim 16177 . . . 4  |- BOUNDED  ( z  e.  A  ->  z  e.  Z )
7 nfv 1574 . . . 4  |-  F/ z ( t  e.  A  ->  t  e.  Z )
8 nfv 1574 . . . 4  |-  F/ z ( u  e.  A  ->  u  e.  Z )
9 nfv 1574 . . . 4  |-  F/ u
( z  e.  A  ->  z  e.  Z )
10 nfv 1574 . . . 4  |-  F/ u
( t  e.  A  ->  t  e.  Z )
11 eleq1 2292 . . . . . 6  |-  ( z  =  t  ->  (
z  e.  A  <->  t  e.  A ) )
12 eleq1 2292 . . . . . 6  |-  ( z  =  t  ->  (
z  e.  Z  <->  t  e.  Z ) )
1311, 12imbi12d 234 . . . . 5  |-  ( z  =  t  ->  (
( z  e.  A  ->  z  e.  Z )  <-> 
( t  e.  A  ->  t  e.  Z ) ) )
1413biimpd 144 . . . 4  |-  ( z  =  t  ->  (
( z  e.  A  ->  z  e.  Z )  ->  ( t  e.  A  ->  t  e.  Z ) ) )
15 eleq1 2292 . . . . . 6  |-  ( z  =  u  ->  (
z  e.  A  <->  u  e.  A ) )
16 eleq1 2292 . . . . . 6  |-  ( z  =  u  ->  (
z  e.  Z  <->  u  e.  Z ) )
1715, 16imbi12d 234 . . . . 5  |-  ( z  =  u  ->  (
( z  e.  A  ->  z  e.  Z )  <-> 
( u  e.  A  ->  u  e.  Z ) ) )
1817biimprd 158 . . . 4  |-  ( z  =  u  ->  (
( u  e.  A  ->  u  e.  Z )  ->  ( z  e.  A  ->  z  e.  Z ) ) )
196, 7, 8, 9, 10, 14, 18bdsetindis 16332 . . 3  |-  ( A. u ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
)  ->  A. z
( z  e.  A  ->  z  e.  Z ) )
201, 19syl6 33 . 2  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. z
( z  e.  A  ->  z  e.  Z ) ) )
21 ssalel 3212 . 2  |-  ( A 
C_  Z  <->  A. z
( z  e.  A  ->  z  e.  Z ) )
2220, 21imbitrrdi 162 1  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A  C_  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   (/)c0 3491   suc csuc 4456  BOUNDED wbdc 16203  Ind wind 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bdim 16177  ax-bdsetind 16331
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-suc 4462  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by:  bj-inf2vn  16337
  Copyright terms: Public domain W3C validator