| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem3 | Unicode version | ||
| Description: Lemma for bj-inf2vn 15620. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-inf2vnlem3.bd1 | 
 | 
| bj-inf2vnlem3.bd2 | 
 | 
| Ref | Expression | 
|---|---|
| bj-inf2vnlem3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-inf2vnlem2 15617 | 
. . 3
 | |
| 2 | bj-inf2vnlem3.bd1 | 
. . . . . 6
 | |
| 3 | 2 | bdeli 15492 | 
. . . . 5
 | 
| 4 | bj-inf2vnlem3.bd2 | 
. . . . . 6
 | |
| 5 | 4 | bdeli 15492 | 
. . . . 5
 | 
| 6 | 3, 5 | ax-bdim 15460 | 
. . . 4
 | 
| 7 | nfv 1542 | 
. . . 4
 | |
| 8 | nfv 1542 | 
. . . 4
 | |
| 9 | nfv 1542 | 
. . . 4
 | |
| 10 | nfv 1542 | 
. . . 4
 | |
| 11 | eleq1 2259 | 
. . . . . 6
 | |
| 12 | eleq1 2259 | 
. . . . . 6
 | |
| 13 | 11, 12 | imbi12d 234 | 
. . . . 5
 | 
| 14 | 13 | biimpd 144 | 
. . . 4
 | 
| 15 | eleq1 2259 | 
. . . . . 6
 | |
| 16 | eleq1 2259 | 
. . . . . 6
 | |
| 17 | 15, 16 | imbi12d 234 | 
. . . . 5
 | 
| 18 | 17 | biimprd 158 | 
. . . 4
 | 
| 19 | 6, 7, 8, 9, 10, 14, 18 | bdsetindis 15615 | 
. . 3
 | 
| 20 | 1, 19 | syl6 33 | 
. 2
 | 
| 21 | dfss2 3172 | 
. 2
 | |
| 22 | 20, 21 | imbitrrdi 162 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bdim 15460 ax-bdsetind 15614 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-suc 4406 df-bdc 15487 df-bj-ind 15573 | 
| This theorem is referenced by: bj-inf2vn 15620 | 
| Copyright terms: Public domain | W3C validator |