Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem3 | Unicode version |
Description: Lemma for bj-inf2vn 13520. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem3.bd1 | BOUNDED |
bj-inf2vnlem3.bd2 | BOUNDED |
Ref | Expression |
---|---|
bj-inf2vnlem3 | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 13517 | . . 3 Ind | |
2 | bj-inf2vnlem3.bd1 | . . . . . 6 BOUNDED | |
3 | 2 | bdeli 13392 | . . . . 5 BOUNDED |
4 | bj-inf2vnlem3.bd2 | . . . . . 6 BOUNDED | |
5 | 4 | bdeli 13392 | . . . . 5 BOUNDED |
6 | 3, 5 | ax-bdim 13360 | . . . 4 BOUNDED |
7 | nfv 1508 | . . . 4 | |
8 | nfv 1508 | . . . 4 | |
9 | nfv 1508 | . . . 4 | |
10 | nfv 1508 | . . . 4 | |
11 | eleq1 2220 | . . . . . 6 | |
12 | eleq1 2220 | . . . . . 6 | |
13 | 11, 12 | imbi12d 233 | . . . . 5 |
14 | 13 | biimpd 143 | . . . 4 |
15 | eleq1 2220 | . . . . . 6 | |
16 | eleq1 2220 | . . . . . 6 | |
17 | 15, 16 | imbi12d 233 | . . . . 5 |
18 | 17 | biimprd 157 | . . . 4 |
19 | 6, 7, 8, 9, 10, 14, 18 | bdsetindis 13515 | . . 3 |
20 | 1, 19 | syl6 33 | . 2 Ind |
21 | dfss2 3117 | . 2 | |
22 | 20, 21 | syl6ibr 161 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wal 1333 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 c0 3394 csuc 4325 BOUNDED wbdc 13386 Ind wind 13472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-bdim 13360 ax-bdsetind 13514 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-suc 4331 df-bdc 13387 df-bj-ind 13473 |
This theorem is referenced by: bj-inf2vn 13520 |
Copyright terms: Public domain | W3C validator |