Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem3 Unicode version

Theorem bj-inf2vnlem3 14007
Description: Lemma for bj-inf2vn 14009. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-inf2vnlem3.bd1  |- BOUNDED  A
bj-inf2vnlem3.bd2  |- BOUNDED  Z
Assertion
Ref Expression
bj-inf2vnlem3  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A  C_  Z ) )
Distinct variable groups:    x, y, A   
x, Z, y

Proof of Theorem bj-inf2vnlem3
Dummy variables  z  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 14006 . . 3  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. u
( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
) ) )
2 bj-inf2vnlem3.bd1 . . . . . 6  |- BOUNDED  A
32bdeli 13881 . . . . 5  |- BOUNDED  z  e.  A
4 bj-inf2vnlem3.bd2 . . . . . 6  |- BOUNDED  Z
54bdeli 13881 . . . . 5  |- BOUNDED  z  e.  Z
63, 5ax-bdim 13849 . . . 4  |- BOUNDED  ( z  e.  A  ->  z  e.  Z )
7 nfv 1521 . . . 4  |-  F/ z ( t  e.  A  ->  t  e.  Z )
8 nfv 1521 . . . 4  |-  F/ z ( u  e.  A  ->  u  e.  Z )
9 nfv 1521 . . . 4  |-  F/ u
( z  e.  A  ->  z  e.  Z )
10 nfv 1521 . . . 4  |-  F/ u
( t  e.  A  ->  t  e.  Z )
11 eleq1 2233 . . . . . 6  |-  ( z  =  t  ->  (
z  e.  A  <->  t  e.  A ) )
12 eleq1 2233 . . . . . 6  |-  ( z  =  t  ->  (
z  e.  Z  <->  t  e.  Z ) )
1311, 12imbi12d 233 . . . . 5  |-  ( z  =  t  ->  (
( z  e.  A  ->  z  e.  Z )  <-> 
( t  e.  A  ->  t  e.  Z ) ) )
1413biimpd 143 . . . 4  |-  ( z  =  t  ->  (
( z  e.  A  ->  z  e.  Z )  ->  ( t  e.  A  ->  t  e.  Z ) ) )
15 eleq1 2233 . . . . . 6  |-  ( z  =  u  ->  (
z  e.  A  <->  u  e.  A ) )
16 eleq1 2233 . . . . . 6  |-  ( z  =  u  ->  (
z  e.  Z  <->  u  e.  Z ) )
1715, 16imbi12d 233 . . . . 5  |-  ( z  =  u  ->  (
( z  e.  A  ->  z  e.  Z )  <-> 
( u  e.  A  ->  u  e.  Z ) ) )
1817biimprd 157 . . . 4  |-  ( z  =  u  ->  (
( u  e.  A  ->  u  e.  Z )  ->  ( z  e.  A  ->  z  e.  Z ) ) )
196, 7, 8, 9, 10, 14, 18bdsetindis 14004 . . 3  |-  ( A. u ( A. t  e.  u  ( t  e.  A  ->  t  e.  Z )  ->  (
u  e.  A  ->  u  e.  Z )
)  ->  A. z
( z  e.  A  ->  z  e.  Z ) )
201, 19syl6 33 . 2  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A. z
( z  e.  A  ->  z  e.  Z ) ) )
21 dfss2 3136 . 2  |-  ( A 
C_  Z  <->  A. z
( z  e.  A  ->  z  e.  Z ) )
2220, 21syl6ibr 161 1  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  Z  ->  A  C_  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   (/)c0 3414   suc csuc 4350  BOUNDED wbdc 13875  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bdim 13849  ax-bdsetind 14003
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-suc 4356  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by:  bj-inf2vn  14009
  Copyright terms: Public domain W3C validator