Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1g GIF version

Theorem bdinex1g 15799
Description: Bounded version of inex1g 4179. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdinex1g.bd BOUNDED 𝐵
Assertion
Ref Expression
bdinex1g (𝐴𝑉 → (𝐴𝐵) ∈ V)

Proof of Theorem bdinex1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ineq1 3366 . . 3 (𝑥 = 𝐴 → (𝑥𝐵) = (𝐴𝐵))
21eleq1d 2273 . 2 (𝑥 = 𝐴 → ((𝑥𝐵) ∈ V ↔ (𝐴𝐵) ∈ V))
3 bdinex1g.bd . . 3 BOUNDED 𝐵
4 vex 2774 . . 3 𝑥 ∈ V
53, 4bdinex1 15797 . 2 (𝑥𝐵) ∈ V
62, 5vtoclg 2832 1 (𝐴𝑉 → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cin 3164  BOUNDED wbdc 15738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-bdsep 15782
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-bdc 15739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator