Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1g GIF version

Theorem bdinex1g 16222
Description: Bounded version of inex1g 4219. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdinex1g.bd BOUNDED 𝐵
Assertion
Ref Expression
bdinex1g (𝐴𝑉 → (𝐴𝐵) ∈ V)

Proof of Theorem bdinex1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ineq1 3398 . . 3 (𝑥 = 𝐴 → (𝑥𝐵) = (𝐴𝐵))
21eleq1d 2298 . 2 (𝑥 = 𝐴 → ((𝑥𝐵) ∈ V ↔ (𝐴𝐵) ∈ V))
3 bdinex1g.bd . . 3 BOUNDED 𝐵
4 vex 2802 . . 3 𝑥 ∈ V
53, 4bdinex1 16220 . 2 (𝑥𝐵) ∈ V
62, 5vtoclg 2861 1 (𝐴𝑉 → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-bdc 16162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator