Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inex1g | Unicode version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3316 | . . 3 | |
2 | 1 | eleq1d 2235 | . 2 |
3 | vex 2729 | . . 3 | |
4 | 3 | inex1 4116 | . 2 |
5 | 2, 4 | vtoclg 2786 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cvv 2726 cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: onin 4364 dmresexg 4907 funimaexg 5272 offval 6057 offval3 6102 ssenen 6817 ressval2 12455 eltg 12692 eltg3 12697 ntrval 12750 restco 12814 |
Copyright terms: Public domain | W3C validator |