![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inex1g | Unicode version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3331 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq1d 2246 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | vex 2742 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | inex1 4139 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | vtoclg 2799 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 |
This theorem is referenced by: onin 4388 dmresexg 4932 funimaexg 5302 offval 6093 offval3 6138 ssenen 6854 ressvalsets 12527 ressex 12528 ressbasd 12530 resseqnbasd 12535 ressinbasd 12536 ressressg 12537 qusin 12752 mgpress 13147 isunitd 13281 eltg 13692 eltg3 13697 ntrval 13750 restco 13814 |
Copyright terms: Public domain | W3C validator |