ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex1g Unicode version

Theorem inex1g 4100
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
inex1g  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )

Proof of Theorem inex1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ineq1 3301 . . 3  |-  ( x  =  A  ->  (
x  i^i  B )  =  ( A  i^i  B ) )
21eleq1d 2226 . 2  |-  ( x  =  A  ->  (
( x  i^i  B
)  e.  _V  <->  ( A  i^i  B )  e.  _V ) )
3 vex 2715 . . 3  |-  x  e. 
_V
43inex1 4098 . 2  |-  ( x  i^i  B )  e. 
_V
52, 4vtoclg 2772 1  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   _Vcvv 2712    i^i cin 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-sep 4082
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108
This theorem is referenced by:  onin  4345  dmresexg  4886  funimaexg  5251  offval  6033  offval3  6076  ssenen  6789  ressval2  12210  eltg  12412  eltg3  12417  ntrval  12470  restco  12534
  Copyright terms: Public domain W3C validator