ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex1g Unicode version

Theorem inex1g 4170
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
inex1g  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )

Proof of Theorem inex1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ineq1 3358 . . 3  |-  ( x  =  A  ->  (
x  i^i  B )  =  ( A  i^i  B ) )
21eleq1d 2265 . 2  |-  ( x  =  A  ->  (
( x  i^i  B
)  e.  _V  <->  ( A  i^i  B )  e.  _V ) )
3 vex 2766 . . 3  |-  x  e. 
_V
43inex1 4168 . 2  |-  ( x  i^i  B )  e. 
_V
52, 4vtoclg 2824 1  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  onin  4422  dmresexg  4970  funimaexg  5343  offval  6147  offval3  6200  ssenen  6921  ressvalsets  12767  ressex  12768  ressbasd  12770  resseqnbasd  12776  ressinbasd  12777  ressressg  12778  qusin  13028  mgpress  13563  isunitd  13738  isrhm  13790  rhmfn  13804  rhmval  13805  2idlval  14134  2idlvalg  14135  eltg  14372  eltg3  14377  ntrval  14430  restco  14494
  Copyright terms: Public domain W3C validator