| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inex1g | Unicode version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 3367 |
. . 3
| |
| 2 | 1 | eleq1d 2274 |
. 2
|
| 3 | vex 2775 |
. . 3
| |
| 4 | 3 | inex1 4179 |
. 2
|
| 5 | 2, 4 | vtoclg 2833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: onin 4434 dmresexg 4983 funimaexg 5359 offval 6168 offval3 6221 ssenen 6950 ressvalsets 12929 ressex 12930 ressbasd 12932 resseqnbasd 12938 ressinbasd 12939 ressressg 12940 qusin 13191 mgpress 13726 isunitd 13901 isrhm 13953 rhmfn 13967 rhmval 13968 2idlval 14297 2idlvalg 14298 eltg 14557 eltg3 14562 ntrval 14615 restco 14679 |
| Copyright terms: Public domain | W3C validator |