ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex1g Unicode version

Theorem inex1g 4181
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
inex1g  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )

Proof of Theorem inex1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ineq1 3367 . . 3  |-  ( x  =  A  ->  (
x  i^i  B )  =  ( A  i^i  B ) )
21eleq1d 2274 . 2  |-  ( x  =  A  ->  (
( x  i^i  B
)  e.  _V  <->  ( A  i^i  B )  e.  _V ) )
3 vex 2775 . . 3  |-  x  e. 
_V
43inex1 4179 . 2  |-  ( x  i^i  B )  e. 
_V
52, 4vtoclg 2833 1  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  onin  4434  dmresexg  4983  funimaexg  5359  offval  6168  offval3  6221  ssenen  6950  ressvalsets  12929  ressex  12930  ressbasd  12932  resseqnbasd  12938  ressinbasd  12939  ressressg  12940  qusin  13191  mgpress  13726  isunitd  13901  isrhm  13953  rhmfn  13967  rhmval  13968  2idlval  14297  2idlvalg  14298  eltg  14557  eltg3  14562  ntrval  14615  restco  14679
  Copyright terms: Public domain W3C validator