| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1 | Unicode version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | elin 3387 |
. . 3
| |
| 4 | elin 3387 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
. 2
|
| 6 | 5 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: ineq2 3399 ineq12 3400 ineq1i 3401 ineq1d 3404 dfrab3ss 3482 intprg 3956 inex1g 4220 reseq1 4999 fiintim 7093 uzin2 11498 ressvalsets 13097 elrestr 13280 tgval 13295 inopn 14677 isbasisg 14718 basis1 14721 basis2 14722 ntrfval 14774 tgrest 14843 restco 14848 restsn 14854 restopnb 14855 txrest 14950 metrest 15180 qtopbasss 15195 bdinex1g 16264 |
| Copyright terms: Public domain | W3C validator |