| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1 | Unicode version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2260 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | elin 3347 |
. . 3
| |
| 4 | elin 3347 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
. 2
|
| 6 | 5 | eqrdv 2194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: ineq2 3359 ineq12 3360 ineq1i 3361 ineq1d 3364 dfrab3ss 3442 intprg 3908 inex1g 4170 reseq1 4941 fiintim 7001 uzin2 11169 ressvalsets 12767 elrestr 12949 tgval 12964 inopn 14323 isbasisg 14364 basis1 14367 basis2 14368 ntrfval 14420 tgrest 14489 restco 14494 restsn 14500 restopnb 14501 txrest 14596 metrest 14826 qtopbasss 14841 bdinex1g 15631 |
| Copyright terms: Public domain | W3C validator |