| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ineq1 | Unicode version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| ineq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 2260 | 
. . . 4
 | |
| 2 | 1 | anbi1d 465 | 
. . 3
 | 
| 3 | elin 3346 | 
. . 3
 | |
| 4 | elin 3346 | 
. . 3
 | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 
. 2
 | 
| 6 | 5 | eqrdv 2194 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: ineq2 3358 ineq12 3359 ineq1i 3360 ineq1d 3363 dfrab3ss 3441 intprg 3907 inex1g 4169 reseq1 4940 fiintim 6992 uzin2 11152 ressvalsets 12742 elrestr 12918 tgval 12933 inopn 14239 isbasisg 14280 basis1 14283 basis2 14284 ntrfval 14336 tgrest 14405 restco 14410 restsn 14416 restopnb 14417 txrest 14512 metrest 14742 qtopbasss 14757 bdinex1g 15547 | 
| Copyright terms: Public domain | W3C validator |