| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1 | Unicode version | ||
| Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | elin 3364 |
. . 3
| |
| 4 | elin 3364 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
. 2
|
| 6 | 5 | eqrdv 2205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: ineq2 3376 ineq12 3377 ineq1i 3378 ineq1d 3381 dfrab3ss 3459 intprg 3932 inex1g 4196 reseq1 4972 fiintim 7054 uzin2 11413 ressvalsets 13011 elrestr 13194 tgval 13209 inopn 14590 isbasisg 14631 basis1 14634 basis2 14635 ntrfval 14687 tgrest 14756 restco 14761 restsn 14767 restopnb 14768 txrest 14863 metrest 15093 qtopbasss 15108 bdinex1g 16036 |
| Copyright terms: Public domain | W3C validator |