Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq1 | Unicode version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) |
Ref | Expression |
---|---|
ineq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . 4 | |
2 | 1 | anbi1d 461 | . . 3 |
3 | elin 3305 | . . 3 | |
4 | elin 3305 | . . 3 | |
5 | 2, 3, 4 | 3bitr4g 222 | . 2 |
6 | 5 | eqrdv 2163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: ineq2 3317 ineq12 3318 ineq1i 3319 ineq1d 3322 dfrab3ss 3400 intprg 3857 inex1g 4118 reseq1 4878 fiintim 6894 uzin2 10929 elrestr 12564 inopn 12641 isbasisg 12682 basis1 12685 basis2 12686 tgval 12689 ntrfval 12740 tgrest 12809 restco 12814 restsn 12820 restopnb 12821 txrest 12916 metrest 13146 qtopbasss 13161 bdinex1g 13783 |
Copyright terms: Public domain | W3C validator |