Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq1 | Unicode version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) |
Ref | Expression |
---|---|
ineq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2234 | . . . 4 | |
2 | 1 | anbi1d 462 | . . 3 |
3 | elin 3310 | . . 3 | |
4 | elin 3310 | . . 3 | |
5 | 2, 3, 4 | 3bitr4g 222 | . 2 |
6 | 5 | eqrdv 2168 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: ineq2 3322 ineq12 3323 ineq1i 3324 ineq1d 3327 dfrab3ss 3405 intprg 3864 inex1g 4125 reseq1 4885 fiintim 6906 uzin2 10951 elrestr 12587 inopn 12795 isbasisg 12836 basis1 12839 basis2 12840 tgval 12843 ntrfval 12894 tgrest 12963 restco 12968 restsn 12974 restopnb 12975 txrest 13070 metrest 13300 qtopbasss 13315 bdinex1g 13936 |
Copyright terms: Public domain | W3C validator |