![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssex | GIF version |
Description: Bounded version of ssex 4152. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdssex.bd | ⊢ BOUNDED 𝐴 |
bdssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bdssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3154 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | bdssex.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
3 | bdssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | bdinex2 15005 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
5 | eleq1 2250 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
6 | 4, 5 | mpbii 148 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ∩ cin 3140 ⊆ wss 3141 BOUNDED wbdc 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-bdsep 14989 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-in 3147 df-ss 3154 df-bdc 14946 |
This theorem is referenced by: bdssexi 15008 bdssexg 15009 bdfind 15051 |
Copyright terms: Public domain | W3C validator |