![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssex | GIF version |
Description: Bounded version of ssex 4166. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdssex.bd | ⊢ BOUNDED 𝐴 |
bdssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bdssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3166 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | bdssex.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
3 | bdssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | bdinex2 15392 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
5 | eleq1 2256 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
6 | 4, 5 | mpbii 148 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 BOUNDED wbdc 15332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bdsep 15376 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-bdc 15333 |
This theorem is referenced by: bdssexi 15395 bdssexg 15396 bdfind 15438 |
Copyright terms: Public domain | W3C validator |