Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssex GIF version

Theorem bdssex 15394
Description: Bounded version of ssex 4166. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssex.bd BOUNDED 𝐴
bdssex.1 𝐵 ∈ V
Assertion
Ref Expression
bdssex (𝐴𝐵𝐴 ∈ V)

Proof of Theorem bdssex
StepHypRef Expression
1 df-ss 3166 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 bdssex.bd . . . 4 BOUNDED 𝐴
3 bdssex.1 . . . 4 𝐵 ∈ V
42, 3bdinex2 15392 . . 3 (𝐴𝐵) ∈ V
5 eleq1 2256 . . 3 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ V ↔ 𝐴 ∈ V))
64, 5mpbii 148 . 2 ((𝐴𝐵) = 𝐴𝐴 ∈ V)
71, 6sylbi 121 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cin 3152  wss 3153  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-bdc 15333
This theorem is referenced by:  bdssexi  15395  bdssexg  15396  bdfind  15438
  Copyright terms: Public domain W3C validator