Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssex GIF version

Theorem bdssex 15842
Description: Bounded version of ssex 4181. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssex.bd BOUNDED 𝐴
bdssex.1 𝐵 ∈ V
Assertion
Ref Expression
bdssex (𝐴𝐵𝐴 ∈ V)

Proof of Theorem bdssex
StepHypRef Expression
1 df-ss 3179 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 bdssex.bd . . . 4 BOUNDED 𝐴
3 bdssex.1 . . . 4 𝐵 ∈ V
42, 3bdinex2 15840 . . 3 (𝐴𝐵) ∈ V
5 eleq1 2268 . . 3 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ V ↔ 𝐴 ∈ V))
64, 5mpbii 148 . 2 ((𝐴𝐵) = 𝐴𝐴 ∈ V)
71, 6sylbi 121 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  wss 3166  BOUNDED wbdc 15780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bdsep 15824
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-bdc 15781
This theorem is referenced by:  bdssexi  15843  bdssexg  15844  bdfind  15886
  Copyright terms: Public domain W3C validator