| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssex | GIF version | ||
| Description: Bounded version of ssex 4197. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdssex.bd | ⊢ BOUNDED 𝐴 |
| bdssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| bdssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3187 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | bdssex.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
| 3 | bdssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | bdinex2 16035 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 5 | eleq1 2270 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 6 | 4, 5 | mpbii 148 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 BOUNDED wbdc 15975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-bdc 15976 |
| This theorem is referenced by: bdssexi 16038 bdssexg 16039 bdfind 16081 |
| Copyright terms: Public domain | W3C validator |