Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind Unicode version

Theorem bdfind 16081
Description: Bounded induction (principle of induction when  A is assumed to be bounded), proved from basic constructive axioms. See find 4665 for a nonconstructive proof of the general case. See findset 16080 for a proof when  A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd  |- BOUNDED  A
Assertion
Ref Expression
bdfind  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
Distinct variable group:    x, A

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4  |- BOUNDED  A
2 bj-omex 16077 . . . 4  |-  om  e.  _V
31, 2bdssex 16037 . . 3  |-  ( A 
C_  om  ->  A  e. 
_V )
433ad2ant1 1021 . 2  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  e.  _V )
5 findset 16080 . 2  |-  ( A  e.  _V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
64, 5mpcom 36 1  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174   (/)c0 3468   suc csuc 4430   omcom 4656  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdan 15950  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-infvn 16076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator