Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind Unicode version

Theorem bdfind 15882
Description: Bounded induction (principle of induction when  A is assumed to be bounded), proved from basic constructive axioms. See find 4647 for a nonconstructive proof of the general case. See findset 15881 for a proof when  A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd  |- BOUNDED  A
Assertion
Ref Expression
bdfind  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
Distinct variable group:    x, A

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4  |- BOUNDED  A
2 bj-omex 15878 . . . 4  |-  om  e.  _V
31, 2bdssex 15838 . . 3  |-  ( A 
C_  om  ->  A  e. 
_V )
433ad2ant1 1021 . 2  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  e.  _V )
5 findset 15881 . 2  |-  ( A  e.  _V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
64, 5mpcom 36 1  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   (/)c0 3460   suc csuc 4412   omcom 4638  BOUNDED wbdc 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4170  ax-pr 4253  ax-un 4480  ax-bd0 15749  ax-bdan 15751  ax-bdor 15752  ax-bdex 15755  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758  ax-bdsep 15820  ax-infvn 15877
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-suc 4418  df-iom 4639  df-bdc 15777  df-bj-ind 15863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator