Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind Unicode version

Theorem bdfind 16309
Description: Bounded induction (principle of induction when  A is assumed to be bounded), proved from basic constructive axioms. See find 4691 for a nonconstructive proof of the general case. See findset 16308 for a proof when  A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd  |- BOUNDED  A
Assertion
Ref Expression
bdfind  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
Distinct variable group:    x, A

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4  |- BOUNDED  A
2 bj-omex 16305 . . . 4  |-  om  e.  _V
31, 2bdssex 16265 . . 3  |-  ( A 
C_  om  ->  A  e. 
_V )
433ad2ant1 1042 . 2  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  e.  _V )
5 findset 16308 . 2  |-  ( A  e.  _V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
64, 5mpcom 36 1  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   (/)c0 3491   suc csuc 4456   omcom 4682  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4210  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdan 16178  ax-bdor 16179  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247  ax-infvn 16304
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-suc 4462  df-iom 4683  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator