ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex Unicode version

Theorem ssex 4171
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4152 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1  |-  B  e. 
_V
Assertion
Ref Expression
ssex  |-  ( A 
C_  B  ->  A  e.  _V )

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3170 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 ssex.1 . . . 4  |-  B  e. 
_V
32inex2 4169 . . 3  |-  ( A  i^i  B )  e. 
_V
4 eleq1 2259 . . 3  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  e.  _V  <->  A  e.  _V ) )
53, 4mpbii 148 . 2  |-  ( ( A  i^i  B )  =  A  ->  A  e.  _V )
61, 5sylbi 121 1  |-  ( A 
C_  B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  ssexi  4172  ssexg  4173  inteximm  4183  exmid1stab  4242  funimaexglem  5342  tfrexlem  6401  elinp  7558  suplocexprlem2b  7798  negfi  11410  ssomct  12687  ssnnctlemct  12688  nninfdc  12695  prdsval  12975  elcncf  14893  plyval  15052  sbthom  15757
  Copyright terms: Public domain W3C validator