ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex Unicode version

Theorem ssex 4126
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4107 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1  |-  B  e. 
_V
Assertion
Ref Expression
ssex  |-  ( A 
C_  B  ->  A  e.  _V )

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3134 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 ssex.1 . . . 4  |-  B  e. 
_V
32inex2 4124 . . 3  |-  ( A  i^i  B )  e. 
_V
4 eleq1 2233 . . 3  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  e.  _V  <->  A  e.  _V ) )
53, 4mpbii 147 . 2  |-  ( ( A  i^i  B )  =  A  ->  A  e.  _V )
61, 5sylbi 120 1  |-  ( A 
C_  B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by:  ssexi  4127  ssexg  4128  inteximm  4135  funimaexglem  5281  tfrexlem  6313  elinp  7436  suplocexprlem2b  7676  negfi  11191  ssomct  12400  ssnnctlemct  12401  nninfdc  12408  elcncf  13354  exmid1stab  14033  sbthom  14058
  Copyright terms: Public domain W3C validator