Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssex | Unicode version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4099 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 |
Ref | Expression |
---|---|
ssex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3128 | . 2 | |
2 | ssex.1 | . . . 4 | |
3 | 2 | inex2 4116 | . . 3 |
4 | eleq1 2228 | . . 3 | |
5 | 3, 4 | mpbii 147 | . 2 |
6 | 1, 5 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cvv 2725 cin 3114 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 df-ss 3128 |
This theorem is referenced by: ssexi 4119 ssexg 4120 inteximm 4127 funimaexglem 5270 tfrexlem 6298 elinp 7411 suplocexprlem2b 7651 negfi 11165 ssomct 12374 ssnnctlemct 12375 nninfdc 12382 elcncf 13160 exmid1stab 13840 sbthom 13865 |
Copyright terms: Public domain | W3C validator |