ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex Unicode version

Theorem ssex 4221
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4202 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1  |-  B  e. 
_V
Assertion
Ref Expression
ssex  |-  ( A 
C_  B  ->  A  e.  _V )

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3210 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 ssex.1 . . . 4  |-  B  e. 
_V
32inex2 4219 . . 3  |-  ( A  i^i  B )  e. 
_V
4 eleq1 2292 . . 3  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  e.  _V  <->  A  e.  _V ) )
53, 4mpbii 148 . 2  |-  ( ( A  i^i  B )  =  A  ->  A  e.  _V )
61, 5sylbi 121 1  |-  ( A 
C_  B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  ssexi  4222  ssexg  4223  inteximm  4233  exmid1stab  4292  funimaexglem  5404  tfrexlem  6480  elinp  7661  suplocexprlem2b  7901  negfi  11739  ssomct  13016  ssnnctlemct  13017  nninfdc  13024  prdsval  13306  elcncf  15247  plyval  15406  sbthom  16394
  Copyright terms: Public domain W3C validator