Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssex | Unicode version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4107 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 |
Ref | Expression |
---|---|
ssex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3134 | . 2 | |
2 | ssex.1 | . . . 4 | |
3 | 2 | inex2 4124 | . . 3 |
4 | eleq1 2233 | . . 3 | |
5 | 3, 4 | mpbii 147 | . 2 |
6 | 1, 5 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 cvv 2730 cin 3120 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssexi 4127 ssexg 4128 inteximm 4135 funimaexglem 5281 tfrexlem 6313 elinp 7436 suplocexprlem2b 7676 negfi 11191 ssomct 12400 ssnnctlemct 12401 nninfdc 12408 elcncf 13354 exmid1stab 14033 sbthom 14058 |
Copyright terms: Public domain | W3C validator |