ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex Unicode version

Theorem ssex 4118
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4099 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1  |-  B  e. 
_V
Assertion
Ref Expression
ssex  |-  ( A 
C_  B  ->  A  e.  _V )

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3128 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 ssex.1 . . . 4  |-  B  e. 
_V
32inex2 4116 . . 3  |-  ( A  i^i  B )  e. 
_V
4 eleq1 2228 . . 3  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  e.  _V  <->  A  e.  _V ) )
53, 4mpbii 147 . 2  |-  ( ( A  i^i  B )  =  A  ->  A  e.  _V )
61, 5sylbi 120 1  |-  ( A 
C_  B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2725    i^i cin 3114    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4099
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-in 3121  df-ss 3128
This theorem is referenced by:  ssexi  4119  ssexg  4120  inteximm  4127  funimaexglem  5270  tfrexlem  6298  elinp  7411  suplocexprlem2b  7651  negfi  11165  ssomct  12374  ssnnctlemct  12375  nninfdc  12382  elcncf  13160  exmid1stab  13840  sbthom  13865
  Copyright terms: Public domain W3C validator