ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1 Unicode version

Theorem abeq1 2197
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2196 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
2 eqcom 2090 . 2  |-  ( { x  |  ph }  =  A  <->  A  =  {
x  |  ph }
)
3 bicom 138 . . 3  |-  ( (
ph 
<->  x  e.  A )  <-> 
( x  e.  A  <->  ph ) )
43albii 1404 . 2  |-  ( A. x ( ph  <->  x  e.  A )  <->  A. x
( x  e.  A  <->  ph ) )
51, 2, 43bitr4i 210 1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wal 1287    = wceq 1289    e. wcel 1438   {cab 2074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084
This theorem is referenced by:  abbi1dv  2207  disj  3331  euabsn2  3511  dm0rn0  4653  dffo3  5446
  Copyright terms: Public domain W3C validator