Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abeq1 | Unicode version |
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
abeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2284 | . 2 | |
2 | eqcom 2177 | . 2 | |
3 | bicom 140 | . . 3 | |
4 | 3 | albii 1468 | . 2 |
5 | 1, 2, 4 | 3bitr4i 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wceq 1353 wcel 2146 cab 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: abbi1dv 2295 disj 3469 euabsn2 3658 dm0rn0 4837 dffo3 5655 |
Copyright terms: Public domain | W3C validator |