ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1 Unicode version

Theorem abeq1 2225
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2224 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
2 eqcom 2117 . 2  |-  ( { x  |  ph }  =  A  <->  A  =  {
x  |  ph }
)
3 bicom 139 . . 3  |-  ( (
ph 
<->  x  e.  A )  <-> 
( x  e.  A  <->  ph ) )
43albii 1429 . 2  |-  ( A. x ( ph  <->  x  e.  A )  <->  A. x
( x  e.  A  <->  ph ) )
51, 2, 43bitr4i 211 1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1312    = wceq 1314    e. wcel 1463   {cab 2101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111
This theorem is referenced by:  abbi1dv  2235  disj  3379  euabsn2  3560  dm0rn0  4724  dffo3  5533
  Copyright terms: Public domain W3C validator