ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1 Unicode version

Theorem abeq1 2250
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2249 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
2 eqcom 2142 . 2  |-  ( { x  |  ph }  =  A  <->  A  =  {
x  |  ph }
)
3 bicom 139 . . 3  |-  ( (
ph 
<->  x  e.  A )  <-> 
( x  e.  A  <->  ph ) )
43albii 1447 . 2  |-  ( A. x ( ph  <->  x  e.  A )  <->  A. x
( x  e.  A  <->  ph ) )
51, 2, 43bitr4i 211 1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   {cab 2126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136
This theorem is referenced by:  abbi1dv  2260  disj  3416  euabsn2  3600  dm0rn0  4764  dffo3  5575
  Copyright terms: Public domain W3C validator