ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq1 Unicode version

Theorem abeq1 2303
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2302 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
2 eqcom 2195 . 2  |-  ( { x  |  ph }  =  A  <->  A  =  {
x  |  ph }
)
3 bicom 140 . . 3  |-  ( (
ph 
<->  x  e.  A )  <-> 
( x  e.  A  <->  ph ) )
43albii 1481 . 2  |-  ( A. x ( ph  <->  x  e.  A )  <->  A. x
( x  e.  A  <->  ph ) )
51, 2, 43bitr4i 212 1  |-  ( { x  |  ph }  =  A  <->  A. x ( ph  <->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189
This theorem is referenced by:  abbi1dv  2313  disj  3495  euabsn2  3687  dm0rn0  4879  dffo3  5705
  Copyright terms: Public domain W3C validator