| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq1 | Unicode version | ||
| Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| abeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2316 |
. 2
| |
| 2 | eqcom 2209 |
. 2
| |
| 3 | bicom 140 |
. . 3
| |
| 4 | 3 | albii 1494 |
. 2
|
| 5 | 1, 2, 4 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: abbi1dv 2327 disj 3517 euabsn2 3712 dm0rn0 4914 dffo3 5750 |
| Copyright terms: Public domain | W3C validator |