Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzennn | Unicode version |
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
Ref | Expression |
---|---|
uzennn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uz 9475 | . . . . 5 | |
2 | zex 9208 | . . . . . 6 | |
3 | 2 | mptex 5719 | . . . . 5 |
4 | 1, 3 | eqeltri 2243 | . . . 4 |
5 | fvexg 5513 | . . . 4 | |
6 | 4, 5 | mpan 422 | . . 3 |
7 | nn0ex 9128 | . . . 4 | |
8 | 7 | a1i 9 | . . 3 |
9 | eluzelz 9483 | . . . . . . 7 | |
10 | 9 | adantl 275 | . . . . . 6 |
11 | simpl 108 | . . . . . 6 | |
12 | 10, 11 | zsubcld 9326 | . . . . 5 |
13 | eluzle 9486 | . . . . . . 7 | |
14 | 13 | adantl 275 | . . . . . 6 |
15 | 10 | zred 9321 | . . . . . . 7 |
16 | 11 | zred 9321 | . . . . . . 7 |
17 | 15, 16 | subge0d 8441 | . . . . . 6 |
18 | 14, 17 | mpbird 166 | . . . . 5 |
19 | elnn0z 9212 | . . . . 5 | |
20 | 12, 18, 19 | sylanbrc 415 | . . . 4 |
21 | 20 | ex 114 | . . 3 |
22 | simpl 108 | . . . . 5 | |
23 | nn0z 9219 | . . . . . . 7 | |
24 | 23 | adantl 275 | . . . . . 6 |
25 | 24, 22 | zaddcld 9325 | . . . . 5 |
26 | nn0ge0 9147 | . . . . . . 7 | |
27 | 26 | adantl 275 | . . . . . 6 |
28 | 22 | zred 9321 | . . . . . . 7 |
29 | 24 | zred 9321 | . . . . . . 7 |
30 | 28, 29 | addge02d 8440 | . . . . . 6 |
31 | 27, 30 | mpbid 146 | . . . . 5 |
32 | eluz2 9480 | . . . . 5 | |
33 | 22, 25, 31, 32 | syl3anbrc 1176 | . . . 4 |
34 | 33 | ex 114 | . . 3 |
35 | 9 | ad2antrl 487 | . . . . . . 7 |
36 | 35 | zcnd 9322 | . . . . . 6 |
37 | simpl 108 | . . . . . . 7 | |
38 | 37 | zcnd 9322 | . . . . . 6 |
39 | simprr 527 | . . . . . . 7 | |
40 | 39 | nn0cnd 9177 | . . . . . 6 |
41 | 36, 38, 40 | subadd2d 8236 | . . . . 5 |
42 | bicom 139 | . . . . . 6 | |
43 | eqcom 2172 | . . . . . . 7 | |
44 | eqcom 2172 | . . . . . . 7 | |
45 | 43, 44 | bibi12i 228 | . . . . . 6 |
46 | 42, 45 | bitri 183 | . . . . 5 |
47 | 41, 46 | sylib 121 | . . . 4 |
48 | 47 | ex 114 | . . 3 |
49 | 6, 8, 21, 34, 48 | en3d 6743 | . 2 |
50 | nn0ennn 10376 | . 2 | |
51 | entr 6758 | . 2 | |
52 | 49, 50, 51 | sylancl 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 cvv 2730 class class class wbr 3987 cmpt 4048 cfv 5196 (class class class)co 5850 cen 6712 cc0 7761 caddc 7764 cle 7942 cmin 8077 cn 8865 cn0 9122 cz 9199 cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-er 6509 df-en 6715 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 |
This theorem is referenced by: exmidunben 12368 |
Copyright terms: Public domain | W3C validator |