| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzennn | Unicode version | ||
| Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| uzennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-uz 9684 |
. . . . 5
| |
| 2 | zex 9416 |
. . . . . 6
| |
| 3 | 2 | mptex 5833 |
. . . . 5
|
| 4 | 1, 3 | eqeltri 2280 |
. . . 4
|
| 5 | fvexg 5618 |
. . . 4
| |
| 6 | 4, 5 | mpan 424 |
. . 3
|
| 7 | nn0ex 9336 |
. . . 4
| |
| 8 | 7 | a1i 9 |
. . 3
|
| 9 | eluzelz 9692 |
. . . . . . 7
| |
| 10 | 9 | adantl 277 |
. . . . . 6
|
| 11 | simpl 109 |
. . . . . 6
| |
| 12 | 10, 11 | zsubcld 9535 |
. . . . 5
|
| 13 | eluzle 9695 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 10 | zred 9530 |
. . . . . . 7
|
| 16 | 11 | zred 9530 |
. . . . . . 7
|
| 17 | 15, 16 | subge0d 8643 |
. . . . . 6
|
| 18 | 14, 17 | mpbird 167 |
. . . . 5
|
| 19 | elnn0z 9420 |
. . . . 5
| |
| 20 | 12, 18, 19 | sylanbrc 417 |
. . . 4
|
| 21 | 20 | ex 115 |
. . 3
|
| 22 | simpl 109 |
. . . . 5
| |
| 23 | nn0z 9427 |
. . . . . . 7
| |
| 24 | 23 | adantl 277 |
. . . . . 6
|
| 25 | 24, 22 | zaddcld 9534 |
. . . . 5
|
| 26 | nn0ge0 9355 |
. . . . . . 7
| |
| 27 | 26 | adantl 277 |
. . . . . 6
|
| 28 | 22 | zred 9530 |
. . . . . . 7
|
| 29 | 24 | zred 9530 |
. . . . . . 7
|
| 30 | 28, 29 | addge02d 8642 |
. . . . . 6
|
| 31 | 27, 30 | mpbid 147 |
. . . . 5
|
| 32 | eluz2 9689 |
. . . . 5
| |
| 33 | 22, 25, 31, 32 | syl3anbrc 1184 |
. . . 4
|
| 34 | 33 | ex 115 |
. . 3
|
| 35 | 9 | ad2antrl 490 |
. . . . . . 7
|
| 36 | 35 | zcnd 9531 |
. . . . . 6
|
| 37 | simpl 109 |
. . . . . . 7
| |
| 38 | 37 | zcnd 9531 |
. . . . . 6
|
| 39 | simprr 531 |
. . . . . . 7
| |
| 40 | 39 | nn0cnd 9385 |
. . . . . 6
|
| 41 | 36, 38, 40 | subadd2d 8437 |
. . . . 5
|
| 42 | bicom 140 |
. . . . . 6
| |
| 43 | eqcom 2209 |
. . . . . . 7
| |
| 44 | eqcom 2209 |
. . . . . . 7
| |
| 45 | 43, 44 | bibi12i 229 |
. . . . . 6
|
| 46 | 42, 45 | bitri 184 |
. . . . 5
|
| 47 | 41, 46 | sylib 122 |
. . . 4
|
| 48 | 47 | ex 115 |
. . 3
|
| 49 | 6, 8, 21, 34, 48 | en3d 6883 |
. 2
|
| 50 | nn0ennn 10615 |
. 2
| |
| 51 | entr 6899 |
. 2
| |
| 52 | 49, 50, 51 | sylancl 413 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-er 6643 df-en 6851 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: xnn0nnen 10619 exmidunben 12912 |
| Copyright terms: Public domain | W3C validator |