| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzennn | Unicode version | ||
| Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| uzennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-uz 9602 |
. . . . 5
| |
| 2 | zex 9335 |
. . . . . 6
| |
| 3 | 2 | mptex 5788 |
. . . . 5
|
| 4 | 1, 3 | eqeltri 2269 |
. . . 4
|
| 5 | fvexg 5577 |
. . . 4
| |
| 6 | 4, 5 | mpan 424 |
. . 3
|
| 7 | nn0ex 9255 |
. . . 4
| |
| 8 | 7 | a1i 9 |
. . 3
|
| 9 | eluzelz 9610 |
. . . . . . 7
| |
| 10 | 9 | adantl 277 |
. . . . . 6
|
| 11 | simpl 109 |
. . . . . 6
| |
| 12 | 10, 11 | zsubcld 9453 |
. . . . 5
|
| 13 | eluzle 9613 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 10 | zred 9448 |
. . . . . . 7
|
| 16 | 11 | zred 9448 |
. . . . . . 7
|
| 17 | 15, 16 | subge0d 8562 |
. . . . . 6
|
| 18 | 14, 17 | mpbird 167 |
. . . . 5
|
| 19 | elnn0z 9339 |
. . . . 5
| |
| 20 | 12, 18, 19 | sylanbrc 417 |
. . . 4
|
| 21 | 20 | ex 115 |
. . 3
|
| 22 | simpl 109 |
. . . . 5
| |
| 23 | nn0z 9346 |
. . . . . . 7
| |
| 24 | 23 | adantl 277 |
. . . . . 6
|
| 25 | 24, 22 | zaddcld 9452 |
. . . . 5
|
| 26 | nn0ge0 9274 |
. . . . . . 7
| |
| 27 | 26 | adantl 277 |
. . . . . 6
|
| 28 | 22 | zred 9448 |
. . . . . . 7
|
| 29 | 24 | zred 9448 |
. . . . . . 7
|
| 30 | 28, 29 | addge02d 8561 |
. . . . . 6
|
| 31 | 27, 30 | mpbid 147 |
. . . . 5
|
| 32 | eluz2 9607 |
. . . . 5
| |
| 33 | 22, 25, 31, 32 | syl3anbrc 1183 |
. . . 4
|
| 34 | 33 | ex 115 |
. . 3
|
| 35 | 9 | ad2antrl 490 |
. . . . . . 7
|
| 36 | 35 | zcnd 9449 |
. . . . . 6
|
| 37 | simpl 109 |
. . . . . . 7
| |
| 38 | 37 | zcnd 9449 |
. . . . . 6
|
| 39 | simprr 531 |
. . . . . . 7
| |
| 40 | 39 | nn0cnd 9304 |
. . . . . 6
|
| 41 | 36, 38, 40 | subadd2d 8356 |
. . . . 5
|
| 42 | bicom 140 |
. . . . . 6
| |
| 43 | eqcom 2198 |
. . . . . . 7
| |
| 44 | eqcom 2198 |
. . . . . . 7
| |
| 45 | 43, 44 | bibi12i 229 |
. . . . . 6
|
| 46 | 42, 45 | bitri 184 |
. . . . 5
|
| 47 | 41, 46 | sylib 122 |
. . . 4
|
| 48 | 47 | ex 115 |
. . 3
|
| 49 | 6, 8, 21, 34, 48 | en3d 6828 |
. 2
|
| 50 | nn0ennn 10525 |
. 2
| |
| 51 | entr 6843 |
. 2
| |
| 52 | 49, 50, 51 | sylancl 413 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-er 6592 df-en 6800 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 |
| This theorem is referenced by: xnn0nnen 10529 exmidunben 12643 |
| Copyright terms: Public domain | W3C validator |