ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzennn Unicode version

Theorem uzennn 10453
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
uzennn  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  ~~  NN )

Proof of Theorem uzennn
Dummy variables  x  y  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uz 9546 . . . . 5  |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  | 
j  <_  k }
)
2 zex 9279 . . . . . 6  |-  ZZ  e.  _V
32mptex 5757 . . . . 5  |-  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_  k } )  e.  _V
41, 3eqeltri 2261 . . . 4  |-  ZZ>=  e.  _V
5 fvexg 5548 . . . 4  |-  ( (
ZZ>=  e.  _V  /\  M  e.  ZZ )  ->  ( ZZ>=
`  M )  e. 
_V )
64, 5mpan 424 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
7 nn0ex 9199 . . . 4  |-  NN0  e.  _V
87a1i 9 . . 3  |-  ( M  e.  ZZ  ->  NN0  e.  _V )
9 eluzelz 9554 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
109adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  x  e.  ZZ )
11 simpl 109 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  M  e.  ZZ )
1210, 11zsubcld 9397 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
( x  -  M
)  e.  ZZ )
13 eluzle 9557 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
1413adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  M  <_  x )
1510zred 9392 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  x  e.  RR )
1611zred 9392 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  M  e.  RR )
1715, 16subge0d 8509 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
( 0  <_  (
x  -  M )  <-> 
M  <_  x )
)
1814, 17mpbird 167 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
0  <_  ( x  -  M ) )
19 elnn0z 9283 . . . . 5  |-  ( ( x  -  M )  e.  NN0  <->  ( ( x  -  M )  e.  ZZ  /\  0  <_ 
( x  -  M
) ) )
2012, 18, 19sylanbrc 417 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
( x  -  M
)  e.  NN0 )
2120ex 115 . . 3  |-  ( M  e.  ZZ  ->  (
x  e.  ( ZZ>= `  M )  ->  (
x  -  M )  e.  NN0 ) )
22 simpl 109 . . . . 5  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  ->  M  e.  ZZ )
23 nn0z 9290 . . . . . . 7  |-  ( y  e.  NN0  ->  y  e.  ZZ )
2423adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
y  e.  ZZ )
2524, 22zaddcld 9396 . . . . 5  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
( y  +  M
)  e.  ZZ )
26 nn0ge0 9218 . . . . . . 7  |-  ( y  e.  NN0  ->  0  <_ 
y )
2726adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
0  <_  y )
2822zred 9392 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  ->  M  e.  RR )
2924zred 9392 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
y  e.  RR )
3028, 29addge02d 8508 . . . . . 6  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
( 0  <_  y  <->  M  <_  ( y  +  M ) ) )
3127, 30mpbid 147 . . . . 5  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  ->  M  <_  ( y  +  M ) )
32 eluz2 9551 . . . . 5  |-  ( ( y  +  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( y  +  M )  e.  ZZ  /\  M  <_ 
( y  +  M
) ) )
3322, 25, 31, 32syl3anbrc 1182 . . . 4  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
( y  +  M
)  e.  ( ZZ>= `  M ) )
3433ex 115 . . 3  |-  ( M  e.  ZZ  ->  (
y  e.  NN0  ->  ( y  +  M )  e.  ( ZZ>= `  M
) ) )
359ad2antrl 490 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  x  e.  ZZ )
3635zcnd 9393 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  x  e.  CC )
37 simpl 109 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  M  e.  ZZ )
3837zcnd 9393 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  M  e.  CC )
39 simprr 531 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  y  e.  NN0 )
4039nn0cnd 9248 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  y  e.  CC )
4136, 38, 40subadd2d 8304 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  ( ( x  -  M )  =  y  <->  ( y  +  M )  =  x ) )
42 bicom 140 . . . . . 6  |-  ( ( ( x  -  M
)  =  y  <->  ( y  +  M )  =  x )  <->  ( ( y  +  M )  =  x  <->  ( x  -  M )  =  y ) )
43 eqcom 2190 . . . . . . 7  |-  ( ( y  +  M )  =  x  <->  x  =  ( y  +  M
) )
44 eqcom 2190 . . . . . . 7  |-  ( ( x  -  M )  =  y  <->  y  =  ( x  -  M
) )
4543, 44bibi12i 229 . . . . . 6  |-  ( ( ( y  +  M
)  =  x  <->  ( x  -  M )  =  y )  <->  ( x  =  ( y  +  M
)  <->  y  =  ( x  -  M ) ) )
4642, 45bitri 184 . . . . 5  |-  ( ( ( x  -  M
)  =  y  <->  ( y  +  M )  =  x )  <->  ( x  =  ( y  +  M
)  <->  y  =  ( x  -  M ) ) )
4741, 46sylib 122 . . . 4  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  ( x  =  ( y  +  M
)  <->  y  =  ( x  -  M ) ) )
4847ex 115 . . 3  |-  ( M  e.  ZZ  ->  (
( x  e.  (
ZZ>= `  M )  /\  y  e.  NN0 )  -> 
( x  =  ( y  +  M )  <-> 
y  =  ( x  -  M ) ) ) )
496, 8, 21, 34, 48en3d 6786 . 2  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  ~~  NN0 )
50 nn0ennn 10450 . 2  |-  NN0  ~~  NN
51 entr 6801 . 2  |-  ( ( ( ZZ>= `  M )  ~~  NN0  /\  NN0  ~~  NN )  ->  ( ZZ>= `  M
)  ~~  NN )
5249, 50, 51sylancl 413 1  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   {crab 2471   _Vcvv 2751   class class class wbr 4017    |-> cmpt 4078   ` cfv 5230  (class class class)co 5890    ~~ cen 6755   0cc0 7828    + caddc 7831    <_ cle 8010    - cmin 8145   NNcn 8936   NN0cn0 9193   ZZcz 9270   ZZ>=cuz 9545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-er 6552  df-en 6758  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-inn 8937  df-n0 9194  df-z 9271  df-uz 9546
This theorem is referenced by:  exmidunben  12444
  Copyright terms: Public domain W3C validator