ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzennn Unicode version

Theorem uzennn 10102
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
uzennn  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  ~~  NN )

Proof of Theorem uzennn
Dummy variables  x  y  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uz 9229 . . . . 5  |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  | 
j  <_  k }
)
2 zex 8967 . . . . . 6  |-  ZZ  e.  _V
32mptex 5600 . . . . 5  |-  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_  k } )  e.  _V
41, 3eqeltri 2187 . . . 4  |-  ZZ>=  e.  _V
5 fvexg 5394 . . . 4  |-  ( (
ZZ>=  e.  _V  /\  M  e.  ZZ )  ->  ( ZZ>=
`  M )  e. 
_V )
64, 5mpan 418 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  e. 
_V )
7 nn0ex 8887 . . . 4  |-  NN0  e.  _V
87a1i 9 . . 3  |-  ( M  e.  ZZ  ->  NN0  e.  _V )
9 eluzelz 9237 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
109adantl 273 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  x  e.  ZZ )
11 simpl 108 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  M  e.  ZZ )
1210, 11zsubcld 9082 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
( x  -  M
)  e.  ZZ )
13 eluzle 9240 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
1413adantl 273 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  M  <_  x )
1510zred 9077 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  x  e.  RR )
1611zred 9077 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  ->  M  e.  RR )
1715, 16subge0d 8215 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
( 0  <_  (
x  -  M )  <-> 
M  <_  x )
)
1814, 17mpbird 166 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
0  <_  ( x  -  M ) )
19 elnn0z 8971 . . . . 5  |-  ( ( x  -  M )  e.  NN0  <->  ( ( x  -  M )  e.  ZZ  /\  0  <_ 
( x  -  M
) ) )
2012, 18, 19sylanbrc 411 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  ( ZZ>= `  M ) )  -> 
( x  -  M
)  e.  NN0 )
2120ex 114 . . 3  |-  ( M  e.  ZZ  ->  (
x  e.  ( ZZ>= `  M )  ->  (
x  -  M )  e.  NN0 ) )
22 simpl 108 . . . . 5  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  ->  M  e.  ZZ )
23 nn0z 8978 . . . . . . 7  |-  ( y  e.  NN0  ->  y  e.  ZZ )
2423adantl 273 . . . . . 6  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
y  e.  ZZ )
2524, 22zaddcld 9081 . . . . 5  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
( y  +  M
)  e.  ZZ )
26 nn0ge0 8906 . . . . . . 7  |-  ( y  e.  NN0  ->  0  <_ 
y )
2726adantl 273 . . . . . 6  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
0  <_  y )
2822zred 9077 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  ->  M  e.  RR )
2924zred 9077 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
y  e.  RR )
3028, 29addge02d 8214 . . . . . 6  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
( 0  <_  y  <->  M  <_  ( y  +  M ) ) )
3127, 30mpbid 146 . . . . 5  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  ->  M  <_  ( y  +  M ) )
32 eluz2 9234 . . . . 5  |-  ( ( y  +  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( y  +  M )  e.  ZZ  /\  M  <_ 
( y  +  M
) ) )
3322, 25, 31, 32syl3anbrc 1148 . . . 4  |-  ( ( M  e.  ZZ  /\  y  e.  NN0 )  -> 
( y  +  M
)  e.  ( ZZ>= `  M ) )
3433ex 114 . . 3  |-  ( M  e.  ZZ  ->  (
y  e.  NN0  ->  ( y  +  M )  e.  ( ZZ>= `  M
) ) )
359ad2antrl 479 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  x  e.  ZZ )
3635zcnd 9078 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  x  e.  CC )
37 simpl 108 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  M  e.  ZZ )
3837zcnd 9078 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  M  e.  CC )
39 simprr 504 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  y  e.  NN0 )
4039nn0cnd 8936 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  y  e.  CC )
4136, 38, 40subadd2d 8015 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  ( ( x  -  M )  =  y  <->  ( y  +  M )  =  x ) )
42 bicom 139 . . . . . 6  |-  ( ( ( x  -  M
)  =  y  <->  ( y  +  M )  =  x )  <->  ( ( y  +  M )  =  x  <->  ( x  -  M )  =  y ) )
43 eqcom 2117 . . . . . . 7  |-  ( ( y  +  M )  =  x  <->  x  =  ( y  +  M
) )
44 eqcom 2117 . . . . . . 7  |-  ( ( x  -  M )  =  y  <->  y  =  ( x  -  M
) )
4543, 44bibi12i 228 . . . . . 6  |-  ( ( ( y  +  M
)  =  x  <->  ( x  -  M )  =  y )  <->  ( x  =  ( y  +  M
)  <->  y  =  ( x  -  M ) ) )
4642, 45bitri 183 . . . . 5  |-  ( ( ( x  -  M
)  =  y  <->  ( y  +  M )  =  x )  <->  ( x  =  ( y  +  M
)  <->  y  =  ( x  -  M ) ) )
4741, 46sylib 121 . . . 4  |-  ( ( M  e.  ZZ  /\  ( x  e.  ( ZZ>=
`  M )  /\  y  e.  NN0 ) )  ->  ( x  =  ( y  +  M
)  <->  y  =  ( x  -  M ) ) )
4847ex 114 . . 3  |-  ( M  e.  ZZ  ->  (
( x  e.  (
ZZ>= `  M )  /\  y  e.  NN0 )  -> 
( x  =  ( y  +  M )  <-> 
y  =  ( x  -  M ) ) ) )
496, 8, 21, 34, 48en3d 6617 . 2  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  ~~  NN0 )
50 nn0ennn 10099 . 2  |-  NN0  ~~  NN
51 entr 6632 . 2  |-  ( ( ( ZZ>= `  M )  ~~  NN0  /\  NN0  ~~  NN )  ->  ( ZZ>= `  M
)  ~~  NN )
5249, 50, 51sylancl 407 1  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   {crab 2394   _Vcvv 2657   class class class wbr 3895    |-> cmpt 3949   ` cfv 5081  (class class class)co 5728    ~~ cen 6586   0cc0 7547    + caddc 7550    <_ cle 7725    - cmin 7856   NNcn 8630   NN0cn0 8881   ZZcz 8958   ZZ>=cuz 9228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-er 6383  df-en 6589  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229
This theorem is referenced by:  exmidunben  11784
  Copyright terms: Public domain W3C validator