Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdsucel Unicode version

Theorem bj-bdsucel 14795
Description: Boundedness of the formula "the successor of the setvar  x belongs to the setvar  y". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdsucel  |- BOUNDED  suc  x  e.  y

Proof of Theorem bj-bdsucel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdeqsuc 14794 . 2  |- BOUNDED  z  =  suc  x
21bj-bdcel 14750 1  |- BOUNDED  suc  x  e.  y
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   suc csuc 4367  BOUNDED wbd 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bd0 14726  ax-bdan 14728  ax-bdor 14729  ax-bdal 14731  ax-bdex 14732  ax-bdeq 14733  ax-bdel 14734  ax-bdsb 14735
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-suc 4373  df-bdc 14754
This theorem is referenced by:  bj-bdind  14843
  Copyright terms: Public domain W3C validator