ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrid Unicode version

Theorem breqtrid 4082
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrid.1  |-  A R B
breqtrid.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
breqtrid  |-  ( ph  ->  A R C )

Proof of Theorem breqtrid
StepHypRef Expression
1 breqtrid.1 . . 3  |-  A R B
21a1i 9 . 2  |-  ( ph  ->  A R B )
3 breqtrid.2 . 2  |-  ( ph  ->  B  =  C )
42, 3breqtrd 4071 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046
This theorem is referenced by:  breqtrrid  4083  phplem3  6953
  Copyright terms: Public domain W3C validator