ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrrid Unicode version

Theorem breqtrrid 4027
Description: B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
breqtrrid.1  |-  A R B
breqtrrid.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
breqtrrid  |-  ( ph  ->  A R C )

Proof of Theorem breqtrrid
StepHypRef Expression
1 breqtrrid.1 . 2  |-  A R B
2 breqtrrid.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2176 . 2  |-  ( ph  ->  B  =  C )
41, 3breqtrid 4026 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  xsubge0  9838  xposdif  9839  bernneq  10596  pcge0  12266  rpabscxpbnd  13653  lgsdir2lem2  13724  trilpolemclim  14068  trilpolemlt1  14073  nconstwlpolemgt0  14095
  Copyright terms: Public domain W3C validator