ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrrid Unicode version

Theorem breqtrrid 4097
Description: B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
breqtrrid.1  |-  A R B
breqtrrid.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
breqtrrid  |-  ( ph  ->  A R C )

Proof of Theorem breqtrrid
StepHypRef Expression
1 breqtrrid.1 . 2  |-  A R B
2 breqtrrid.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2213 . 2  |-  ( ph  ->  B  =  C )
41, 3breqtrid 4096 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  xsubge0  10038  xposdif  10039  bernneq  10842  bitsfzo  12381  bitsmod  12382  bitsinv1lem  12387  pcge0  12751  rpabscxpbnd  15527  lgsdir2lem2  15621  2lgsoddprmlem3  15703  trilpolemclim  16177  trilpolemlt1  16182  nconstwlpolemgt0  16205
  Copyright terms: Public domain W3C validator