| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 |
|
| eqbrtrrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 |
. 2
| |
| 2 | eqbrtrrid.1 |
. 2
| |
| 3 | eqid 2207 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4092 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: enpr1g 6913 pr2cv1 7329 endjudisj 7353 recexprlem1ssl 7781 addgt0 8556 addgegt0 8557 addgtge0 8558 addge0 8559 expge1 10758 expcnv 11930 fprodge1 12065 cos12dec 12194 3dvds 12290 bitsinv1lem 12387 ncoprmgcdne1b 12526 phicl2 12651 exmidunben 12912 prdsvalstrd 13218 znidomb 14535 sin0pilem2 15369 cosq23lt0 15420 cos0pilt1 15439 rplogcl 15466 logge0 15467 logdivlti 15468 mersenne 15584 perfectlem2 15587 lgseisen 15666 lgsquadlem1 15669 |
| Copyright terms: Public domain | W3C validator |