![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
eqbrtrrid.1 |
![]() ![]() ![]() ![]() |
eqbrtrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqbrtrrid.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr3g 4063 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: enpr1g 6854 endjudisj 7272 recexprlem1ssl 7695 addgt0 8469 addgegt0 8470 addgtge0 8471 addge0 8472 expge1 10650 expcnv 11650 fprodge1 11785 cos12dec 11914 ncoprmgcdne1b 12230 phicl2 12355 exmidunben 12586 znidomb 14157 sin0pilem2 14958 cosq23lt0 15009 cos0pilt1 15028 rplogcl 15055 logge0 15056 logdivlti 15057 lgseisen 15231 lgsquadlem1 15234 |
Copyright terms: Public domain | W3C validator |