ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrrid Unicode version

Theorem eqbrtrrid 4119
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
eqbrtrrid.1  |-  B  =  A
eqbrtrrid.2  |-  ( ph  ->  B R C )
Assertion
Ref Expression
eqbrtrrid  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrrid
StepHypRef Expression
1 eqbrtrrid.2 . 2  |-  ( ph  ->  B R C )
2 eqbrtrrid.1 . 2  |-  B  =  A
3 eqid 2229 . 2  |-  C  =  C
41, 2, 33brtr3g 4116 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  enpr1g  6950  pr2cv1  7368  endjudisj  7392  recexprlem1ssl  7820  addgt0  8595  addgegt0  8596  addgtge0  8597  addge0  8598  expge1  10798  expcnv  12015  fprodge1  12150  cos12dec  12279  3dvds  12375  bitsinv1lem  12472  ncoprmgcdne1b  12611  phicl2  12736  exmidunben  12997  prdsvalstrd  13304  znidomb  14622  sin0pilem2  15456  cosq23lt0  15507  cos0pilt1  15526  rplogcl  15553  logge0  15554  logdivlti  15555  mersenne  15671  perfectlem2  15674  lgseisen  15753  lgsquadlem1  15756
  Copyright terms: Public domain W3C validator