| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 |
|
| eqbrtrrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 |
. 2
| |
| 2 | eqbrtrrid.1 |
. 2
| |
| 3 | eqid 2205 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4078 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: enpr1g 6892 endjudisj 7324 recexprlem1ssl 7748 addgt0 8523 addgegt0 8524 addgtge0 8525 addge0 8526 expge1 10723 expcnv 11848 fprodge1 11983 cos12dec 12112 3dvds 12208 bitsinv1lem 12305 ncoprmgcdne1b 12444 phicl2 12569 exmidunben 12830 prdsvalstrd 13136 znidomb 14453 sin0pilem2 15287 cosq23lt0 15338 cos0pilt1 15357 rplogcl 15384 logge0 15385 logdivlti 15386 mersenne 15502 perfectlem2 15505 lgseisen 15584 lgsquadlem1 15587 |
| Copyright terms: Public domain | W3C validator |