| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) | 
| Ref | Expression | 
|---|---|
| eqbrtrrid.1 | 
 | 
| eqbrtrrid.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqbrtrrid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqbrtrrid.2 | 
. 2
 | |
| 2 | eqbrtrrid.1 | 
. 2
 | |
| 3 | eqid 2196 | 
. 2
 | |
| 4 | 1, 2, 3 | 3brtr3g 4066 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: enpr1g 6857 endjudisj 7277 recexprlem1ssl 7700 addgt0 8475 addgegt0 8476 addgtge0 8477 addge0 8478 expge1 10668 expcnv 11669 fprodge1 11804 cos12dec 11933 3dvds 12029 ncoprmgcdne1b 12257 phicl2 12382 exmidunben 12643 znidomb 14214 sin0pilem2 15018 cosq23lt0 15069 cos0pilt1 15088 rplogcl 15115 logge0 15116 logdivlti 15117 mersenne 15233 perfectlem2 15236 lgseisen 15315 lgsquadlem1 15318 | 
| Copyright terms: Public domain | W3C validator |