![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
eqbrtrrid.1 |
![]() ![]() ![]() ![]() |
eqbrtrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqbrtrrid.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr3g 4062 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: enpr1g 6852 endjudisj 7270 recexprlem1ssl 7693 addgt0 8467 addgegt0 8468 addgtge0 8469 addge0 8470 expge1 10647 expcnv 11647 fprodge1 11782 cos12dec 11911 ncoprmgcdne1b 12227 phicl2 12352 exmidunben 12583 znidomb 14146 sin0pilem2 14917 cosq23lt0 14968 cos0pilt1 14987 rplogcl 15014 logge0 15015 logdivlti 15016 lgseisen 15190 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |