ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrrid Unicode version

Theorem eqbrtrrid 4065
Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
Hypotheses
Ref Expression
eqbrtrrid.1  |-  B  =  A
eqbrtrrid.2  |-  ( ph  ->  B R C )
Assertion
Ref Expression
eqbrtrrid  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrrid
StepHypRef Expression
1 eqbrtrrid.2 . 2  |-  ( ph  ->  B R C )
2 eqbrtrrid.1 . 2  |-  B  =  A
3 eqid 2193 . 2  |-  C  =  C
41, 2, 33brtr3g 4062 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  enpr1g  6852  endjudisj  7270  recexprlem1ssl  7693  addgt0  8467  addgegt0  8468  addgtge0  8469  addge0  8470  expge1  10647  expcnv  11647  fprodge1  11782  cos12dec  11911  ncoprmgcdne1b  12227  phicl2  12352  exmidunben  12583  znidomb  14146  sin0pilem2  14917  cosq23lt0  14968  cos0pilt1  14987  rplogcl  15014  logge0  15015  logdivlti  15016  lgseisen  15190  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator