| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 |
|
| eqbrtrrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 |
. 2
| |
| 2 | eqbrtrrid.1 |
. 2
| |
| 3 | eqid 2205 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4077 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: enpr1g 6890 endjudisj 7322 recexprlem1ssl 7746 addgt0 8521 addgegt0 8522 addgtge0 8523 addge0 8524 expge1 10721 expcnv 11815 fprodge1 11950 cos12dec 12079 3dvds 12175 bitsinv1lem 12272 ncoprmgcdne1b 12411 phicl2 12536 exmidunben 12797 prdsvalstrd 13103 znidomb 14420 sin0pilem2 15254 cosq23lt0 15305 cos0pilt1 15324 rplogcl 15351 logge0 15352 logdivlti 15353 mersenne 15469 perfectlem2 15472 lgseisen 15551 lgsquadlem1 15554 |
| Copyright terms: Public domain | W3C validator |