| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| Ref | Expression |
|---|---|
| eqbrtrrid.1 |
|
| eqbrtrrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrid.2 |
. 2
| |
| 2 | eqbrtrrid.1 |
. 2
| |
| 3 | eqid 2229 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: enpr1g 6950 pr2cv1 7368 endjudisj 7392 recexprlem1ssl 7820 addgt0 8595 addgegt0 8596 addgtge0 8597 addge0 8598 expge1 10798 expcnv 12015 fprodge1 12150 cos12dec 12279 3dvds 12375 bitsinv1lem 12472 ncoprmgcdne1b 12611 phicl2 12736 exmidunben 12997 prdsvalstrd 13304 znidomb 14622 sin0pilem2 15456 cosq23lt0 15507 cos0pilt1 15526 rplogcl 15553 logge0 15554 logdivlti 15555 mersenne 15671 perfectlem2 15674 lgseisen 15753 lgsquadlem1 15756 |
| Copyright terms: Public domain | W3C validator |