ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrid GIF version

Theorem breqtrid 4070
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrid.1 𝐴𝑅𝐵
breqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
breqtrid (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrid
StepHypRef Expression
1 breqtrid.1 . . 3 𝐴𝑅𝐵
21a1i 9 . 2 (𝜑𝐴𝑅𝐵)
3 breqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3breqtrd 4059 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  breqtrrid  4071  phplem3  6915
  Copyright terms: Public domain W3C validator