| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem3 | Unicode version | ||
| Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 7013. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| phplem2.1 |
|
| phplem2.2 |
|
| Ref | Expression |
|---|---|
| phplem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci 4493 |
. 2
| |
| 2 | phplem2.1 |
. . . 4
| |
| 3 | phplem2.2 |
. . . 4
| |
| 4 | 2, 3 | phplem2 7010 |
. . 3
|
| 5 | 2 | enref 6914 |
. . . 4
|
| 6 | nnord 4703 |
. . . . . 6
| |
| 7 | orddif 4638 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | sneq 3677 |
. . . . . . 7
| |
| 10 | 9 | difeq2d 3322 |
. . . . . 6
|
| 11 | 10 | eqcoms 2232 |
. . . . 5
|
| 12 | 8, 11 | sylan9eq 2282 |
. . . 4
|
| 13 | 5, 12 | breqtrid 4119 |
. . 3
|
| 14 | 4, 13 | jaodan 802 |
. 2
|
| 15 | 1, 14 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-en 6886 |
| This theorem is referenced by: phplem4 7012 phplem3g 7013 |
| Copyright terms: Public domain | W3C validator |