ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3 Unicode version

Theorem phplem3 6912
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6914. (Contributed by NM, 26-May-1998.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem3  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )

Proof of Theorem phplem3
StepHypRef Expression
1 elsuci 4435 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 phplem2.1 . . . 4  |-  A  e. 
_V
3 phplem2.2 . . . 4  |-  B  e. 
_V
42, 3phplem2 6911 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
52enref 6821 . . . 4  |-  A  ~~  A
6 nnord 4645 . . . . . 6  |-  ( A  e.  om  ->  Ord  A )
7 orddif 4580 . . . . . 6  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
86, 7syl 14 . . . . 5  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
9 sneq 3630 . . . . . . 7  |-  ( A  =  B  ->  { A }  =  { B } )
109difeq2d 3278 . . . . . 6  |-  ( A  =  B  ->  ( suc  A  \  { A } )  =  ( suc  A  \  { B } ) )
1110eqcoms 2196 . . . . 5  |-  ( B  =  A  ->  ( suc  A  \  { A } )  =  ( suc  A  \  { B } ) )
128, 11sylan9eq 2246 . . . 4  |-  ( ( A  e.  om  /\  B  =  A )  ->  A  =  ( suc 
A  \  { B } ) )
135, 12breqtrid 4067 . . 3  |-  ( ( A  e.  om  /\  B  =  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
144, 13jaodan 798 . 2  |-  ( ( A  e.  om  /\  ( B  e.  A  \/  B  =  A
) )  ->  A  ~~  ( suc  A  \  { B } ) )
151, 14sylan2 286 1  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   _Vcvv 2760    \ cdif 3151   {csn 3619   class class class wbr 4030   Ord word 4394   suc csuc 4397   omcom 4623    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-en 6797
This theorem is referenced by:  phplem4  6913  phplem3g  6914
  Copyright terms: Public domain W3C validator