ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3 Unicode version

Theorem phplem3 7011
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 7013. (Contributed by NM, 26-May-1998.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem3  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )

Proof of Theorem phplem3
StepHypRef Expression
1 elsuci 4493 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 phplem2.1 . . . 4  |-  A  e. 
_V
3 phplem2.2 . . . 4  |-  B  e. 
_V
42, 3phplem2 7010 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
52enref 6914 . . . 4  |-  A  ~~  A
6 nnord 4703 . . . . . 6  |-  ( A  e.  om  ->  Ord  A )
7 orddif 4638 . . . . . 6  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
86, 7syl 14 . . . . 5  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
9 sneq 3677 . . . . . . 7  |-  ( A  =  B  ->  { A }  =  { B } )
109difeq2d 3322 . . . . . 6  |-  ( A  =  B  ->  ( suc  A  \  { A } )  =  ( suc  A  \  { B } ) )
1110eqcoms 2232 . . . . 5  |-  ( B  =  A  ->  ( suc  A  \  { A } )  =  ( suc  A  \  { B } ) )
128, 11sylan9eq 2282 . . . 4  |-  ( ( A  e.  om  /\  B  =  A )  ->  A  =  ( suc 
A  \  { B } ) )
135, 12breqtrid 4119 . . 3  |-  ( ( A  e.  om  /\  B  =  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
144, 13jaodan 802 . 2  |-  ( ( A  e.  om  /\  ( B  e.  A  \/  B  =  A
) )  ->  A  ~~  ( suc  A  \  { B } ) )
151, 14sylan2 286 1  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194   {csn 3666   class class class wbr 4082   Ord word 4452   suc csuc 4455   omcom 4681    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-en 6886
This theorem is referenced by:  phplem4  7012  phplem3g  7013
  Copyright terms: Public domain W3C validator