ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviun Unicode version

Theorem cbviun 3970
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
cbviun.1  |-  F/_ y B
cbviun.2  |-  F/_ x C
cbviun.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbviun  |-  U_ x  e.  A  B  =  U_ y  e.  A  C
Distinct variable groups:    y, A    x, A
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbviun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5  |-  F/_ y B
21nfcri 2343 . . . 4  |-  F/ y  z  e.  B
3 cbviun.2 . . . . 5  |-  F/_ x C
43nfcri 2343 . . . 4  |-  F/ x  z  e.  C
5 cbviun.3 . . . . 5  |-  ( x  =  y  ->  B  =  C )
65eleq2d 2276 . . . 4  |-  ( x  =  y  ->  (
z  e.  B  <->  z  e.  C ) )
72, 4, 6cbvrex 2736 . . 3  |-  ( E. x  e.  A  z  e.  B  <->  E. y  e.  A  z  e.  C )
87abbii 2322 . 2  |-  { z  |  E. x  e.  A  z  e.  B }  =  { z  |  E. y  e.  A  z  e.  C }
9 df-iun 3935 . 2  |-  U_ x  e.  A  B  =  { z  |  E. x  e.  A  z  e.  B }
10 df-iun 3935 . 2  |-  U_ y  e.  A  C  =  { z  |  E. y  e.  A  z  e.  C }
118, 9, 103eqtr4i 2237 1  |-  U_ x  e.  A  B  =  U_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {cab 2192   F/_wnfc 2336   E.wrex 2486   U_ciun 3933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-iun 3935
This theorem is referenced by:  cbviunv  3972  funiunfvdmf  5846  mpomptsx  6296  dmmpossx  6298  fmpox  6299  fsum2dlemstep  11820  fisumcom2  11824  fsumiun  11863  fprod2dlemstep  12008  fprodcom2fi  12012  ctiunctlemf  12884  ctiunctal  12887
  Copyright terms: Public domain W3C validator