ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviun Unicode version

Theorem cbviun 3953
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
cbviun.1  |-  F/_ y B
cbviun.2  |-  F/_ x C
cbviun.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbviun  |-  U_ x  e.  A  B  =  U_ y  e.  A  C
Distinct variable groups:    y, A    x, A
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbviun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5  |-  F/_ y B
21nfcri 2333 . . . 4  |-  F/ y  z  e.  B
3 cbviun.2 . . . . 5  |-  F/_ x C
43nfcri 2333 . . . 4  |-  F/ x  z  e.  C
5 cbviun.3 . . . . 5  |-  ( x  =  y  ->  B  =  C )
65eleq2d 2266 . . . 4  |-  ( x  =  y  ->  (
z  e.  B  <->  z  e.  C ) )
72, 4, 6cbvrex 2726 . . 3  |-  ( E. x  e.  A  z  e.  B  <->  E. y  e.  A  z  e.  C )
87abbii 2312 . 2  |-  { z  |  E. x  e.  A  z  e.  B }  =  { z  |  E. y  e.  A  z  e.  C }
9 df-iun 3918 . 2  |-  U_ x  e.  A  B  =  { z  |  E. x  e.  A  z  e.  B }
10 df-iun 3918 . 2  |-  U_ y  e.  A  C  =  { z  |  E. y  e.  A  z  e.  C }
118, 9, 103eqtr4i 2227 1  |-  U_ x  e.  A  B  =  U_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182   F/_wnfc 2326   E.wrex 2476   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-iun 3918
This theorem is referenced by:  cbviunv  3955  funiunfvdmf  5811  mpomptsx  6255  dmmpossx  6257  fmpox  6258  fsum2dlemstep  11599  fisumcom2  11603  fsumiun  11642  fprod2dlemstep  11787  fprodcom2fi  11791  ctiunctlemf  12655  ctiunctal  12658
  Copyright terms: Public domain W3C validator