| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbviin | GIF version | ||
| Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbviun.1 | ⊢ Ⅎ𝑦𝐵 |
| cbviun.2 | ⊢ Ⅎ𝑥𝐶 |
| cbviun.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviun.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 3 | cbviun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 5 | cbviun.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 5 | eleq2d 2266 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | 2, 4, 6 | cbvral 2725 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 7 | abbii 2312 | . 2 ⊢ {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 9 | df-iin 3919 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 10 | df-iin 3919 | . 2 ⊢ ∩ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 11 | 8, 9, 10 | 3eqtr4i 2227 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 ∀wral 2475 ∩ ciin 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-iin 3919 |
| This theorem is referenced by: cbviinv 3956 |
| Copyright terms: Public domain | W3C validator |