Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopabv Unicode version

Theorem cbvopabv 4007
 Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
Hypothesis
Ref Expression
cbvopabv.1
Assertion
Ref Expression
cbvopabv
Distinct variable groups:   ,,,   ,,   ,,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbvopabv
StepHypRef Expression
1 nfv 1509 . 2
2 nfv 1509 . 2
3 nfv 1509 . 2
4 nfv 1509 . 2
5 cbvopabv.1 . 2
61, 2, 3, 4, 5cbvopab 4006 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1332  copab 3995 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3079  df-sn 3537  df-pr 3538  df-op 3540  df-opab 3997 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator