| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvopabv | GIF version | ||
| Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) | 
| Ref | Expression | 
|---|---|
| cbvopabv.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvopabv | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 3 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 4 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 5 | cbvopabv.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvopab 4104 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 | 
| This theorem is referenced by: lgsquadlem3 15320 lgsquad 15321 | 
| Copyright terms: Public domain | W3C validator |