| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvopabv | GIF version | ||
| Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) |
| Ref | Expression |
|---|---|
| cbvopabv.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopabv | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 3 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 4 | nfv 1551 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 5 | cbvopabv.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvopab 4115 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 {copab 4104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 |
| This theorem is referenced by: lgsquadlem3 15556 lgsquad 15557 |
| Copyright terms: Public domain | W3C validator |