ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab Unicode version

Theorem cbvopab 4076
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
cbvopab.1  |-  F/ z
ph
cbvopab.2  |-  F/ w ph
cbvopab.3  |-  F/ x ps
cbvopab.4  |-  F/ y ps
cbvopab.5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbvopab  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
Distinct variable group:    x, y, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)

Proof of Theorem cbvopab
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . . . 5  |-  F/ z  v  =  <. x ,  y >.
2 cbvopab.1 . . . . 5  |-  F/ z
ph
31, 2nfan 1565 . . . 4  |-  F/ z ( v  =  <. x ,  y >.  /\  ph )
4 nfv 1528 . . . . 5  |-  F/ w  v  =  <. x ,  y >.
5 cbvopab.2 . . . . 5  |-  F/ w ph
64, 5nfan 1565 . . . 4  |-  F/ w
( v  =  <. x ,  y >.  /\  ph )
7 nfv 1528 . . . . 5  |-  F/ x  v  =  <. z ,  w >.
8 cbvopab.3 . . . . 5  |-  F/ x ps
97, 8nfan 1565 . . . 4  |-  F/ x
( v  =  <. z ,  w >.  /\  ps )
10 nfv 1528 . . . . 5  |-  F/ y  v  =  <. z ,  w >.
11 cbvopab.4 . . . . 5  |-  F/ y ps
1210, 11nfan 1565 . . . 4  |-  F/ y ( v  =  <. z ,  w >.  /\  ps )
13 opeq12 3782 . . . . . 6  |-  ( ( x  =  z  /\  y  =  w )  -> 
<. x ,  y >.  =  <. z ,  w >. )
1413eqeq2d 2189 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( v  =  <. x ,  y >.  <->  v  =  <. z ,  w >. ) )
15 cbvopab.5 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
1614, 15anbi12d 473 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( v  = 
<. x ,  y >.  /\  ph )  <->  ( v  =  <. z ,  w >.  /\  ps ) ) )
173, 6, 9, 12, 16cbvex2 1922 . . 3  |-  ( E. x E. y ( v  =  <. x ,  y >.  /\  ph ) 
<->  E. z E. w
( v  =  <. z ,  w >.  /\  ps ) )
1817abbii 2293 . 2  |-  { v  |  E. x E. y ( v  = 
<. x ,  y >.  /\  ph ) }  =  { v  |  E. z E. w ( v  =  <. z ,  w >.  /\  ps ) }
19 df-opab 4067 . 2  |-  { <. x ,  y >.  |  ph }  =  { v  |  E. x E. y
( v  =  <. x ,  y >.  /\  ph ) }
20 df-opab 4067 . 2  |-  { <. z ,  w >.  |  ps }  =  { v  |  E. z E. w
( v  =  <. z ,  w >.  /\  ps ) }
2118, 19, 203eqtr4i 2208 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   F/wnf 1460   E.wex 1492   {cab 2163   <.cop 3597   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067
This theorem is referenced by:  cbvopabv  4077  opelopabsb  4262
  Copyright terms: Public domain W3C validator