Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvopab1 | Unicode version |
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
cbvopab1.1 | |
cbvopab1.2 | |
cbvopab1.3 |
Ref | Expression |
---|---|
cbvopab1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . . 5 | |
2 | nfv 1516 | . . . . . . 7 | |
3 | nfs1v 1927 | . . . . . . 7 | |
4 | 2, 3 | nfan 1553 | . . . . . 6 |
5 | 4 | nfex 1625 | . . . . 5 |
6 | opeq1 3758 | . . . . . . . 8 | |
7 | 6 | eqeq2d 2177 | . . . . . . 7 |
8 | sbequ12 1759 | . . . . . . 7 | |
9 | 7, 8 | anbi12d 465 | . . . . . 6 |
10 | 9 | exbidv 1813 | . . . . 5 |
11 | 1, 5, 10 | cbvex 1744 | . . . 4 |
12 | nfv 1516 | . . . . . . 7 | |
13 | cbvopab1.1 | . . . . . . . 8 | |
14 | 13 | nfsb 1934 | . . . . . . 7 |
15 | 12, 14 | nfan 1553 | . . . . . 6 |
16 | 15 | nfex 1625 | . . . . 5 |
17 | nfv 1516 | . . . . 5 | |
18 | opeq1 3758 | . . . . . . . 8 | |
19 | 18 | eqeq2d 2177 | . . . . . . 7 |
20 | sbequ 1828 | . . . . . . . 8 | |
21 | cbvopab1.2 | . . . . . . . . 9 | |
22 | cbvopab1.3 | . . . . . . . . 9 | |
23 | 21, 22 | sbie 1779 | . . . . . . . 8 |
24 | 20, 23 | bitrdi 195 | . . . . . . 7 |
25 | 19, 24 | anbi12d 465 | . . . . . 6 |
26 | 25 | exbidv 1813 | . . . . 5 |
27 | 16, 17, 26 | cbvex 1744 | . . . 4 |
28 | 11, 27 | bitri 183 | . . 3 |
29 | 28 | abbii 2282 | . 2 |
30 | df-opab 4044 | . 2 | |
31 | df-opab 4044 | . 2 | |
32 | 29, 30, 31 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wnf 1448 wex 1480 wsb 1750 cab 2151 cop 3579 copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 |
This theorem is referenced by: cbvopab1v 4058 cbvmptf 4076 cbvmpt 4077 |
Copyright terms: Public domain | W3C validator |