ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreuw Unicode version

Theorem cbvreuw 2760
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 2763 with a disjoint variable condition. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Dec-2024.)
Hypotheses
Ref Expression
cbvreuw.1  |-  F/ y
ph
cbvreuw.2  |-  F/ x ps
cbvreuw.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvreuw  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
Distinct variable group:    x, A, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvreuw
StepHypRef Expression
1 cbvreuw.1 . . . 4  |-  F/ y
ph
2 cbvreuw.2 . . . 4  |-  F/ x ps
3 cbvreuw.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvrexw 2759 . . 3  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
51, 2, 3cbvrmow 2714 . . 3  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
64, 5anbi12i 460 . 2  |-  ( ( E. x  e.  A  ph 
/\  E* x  e.  A  ph )  <->  ( E. y  e.  A  ps  /\  E* y  e.  A  ps ) )
7 reu5 2749 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
8 reu5 2749 . 2  |-  ( E! y  e.  A  ps  <->  ( E. y  e.  A  ps  /\  E* y  e.  A  ps ) )
96, 7, 83bitr4i 212 1  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1506   E.wrex 2509   E!wreu 2510   E*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by:  reu8nf  3110
  Copyright terms: Public domain W3C validator