ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu8nf Unicode version

Theorem reu8nf 3087
Description: Restricted uniqueness using implicit substitution. This version of reu8 2976 uses a nonfreeness hypothesis for  x and  ps instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.)
Hypotheses
Ref Expression
reu8nf.1  |-  F/ x ps
reu8nf.2  |-  F/ x ch
reu8nf.3  |-  ( x  =  w  ->  ( ph 
<->  ch ) )
reu8nf.4  |-  ( w  =  y  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
reu8nf  |-  ( E! x  e.  A  ph  <->  E. x  e.  A  (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Distinct variable groups:    x, w, y, A    ph, w    ps, w    ch, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, w)

Proof of Theorem reu8nf
StepHypRef Expression
1 nfv 1552 . . 3  |-  F/ w ph
2 reu8nf.2 . . 3  |-  F/ x ch
3 reu8nf.3 . . 3  |-  ( x  =  w  ->  ( ph 
<->  ch ) )
41, 2, 3cbvreuw 2737 . 2  |-  ( E! x  e.  A  ph  <->  E! w  e.  A  ch )
5 reu8nf.4 . . 3  |-  ( w  =  y  ->  ( ch 
<->  ps ) )
65reu8 2976 . 2  |-  ( E! w  e.  A  ch  <->  E. w  e.  A  ( ch  /\  A. y  e.  A  ( ps  ->  w  =  y ) ) )
7 nfcv 2350 . . . . 5  |-  F/_ x A
8 reu8nf.1 . . . . . 6  |-  F/ x ps
9 nfv 1552 . . . . . 6  |-  F/ x  w  =  y
108, 9nfim 1596 . . . . 5  |-  F/ x
( ps  ->  w  =  y )
117, 10nfralw 2545 . . . 4  |-  F/ x A. y  e.  A  ( ps  ->  w  =  y )
122, 11nfan 1589 . . 3  |-  F/ x
( ch  /\  A. y  e.  A  ( ps  ->  w  =  y ) )
13 nfv 1552 . . 3  |-  F/ w
( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) )
143bicomd 141 . . . . 5  |-  ( x  =  w  ->  ( ch 
<-> 
ph ) )
1514equcoms 1732 . . . 4  |-  ( w  =  x  ->  ( ch 
<-> 
ph ) )
16 equequ1 1736 . . . . . 6  |-  ( w  =  x  ->  (
w  =  y  <->  x  =  y ) )
1716imbi2d 230 . . . . 5  |-  ( w  =  x  ->  (
( ps  ->  w  =  y )  <->  ( ps  ->  x  =  y ) ) )
1817ralbidv 2508 . . . 4  |-  ( w  =  x  ->  ( A. y  e.  A  ( ps  ->  w  =  y )  <->  A. y  e.  A  ( ps  ->  x  =  y ) ) )
1915, 18anbi12d 473 . . 3  |-  ( w  =  x  ->  (
( ch  /\  A. y  e.  A  ( ps  ->  w  =  y ) )  <->  ( ph  /\ 
A. y  e.  A  ( ps  ->  x  =  y ) ) ) )
2012, 13, 19cbvrexw 2736 . 2  |-  ( E. w  e.  A  ( ch  /\  A. y  e.  A  ( ps  ->  w  =  y ) )  <->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
214, 6, 203bitri 206 1  |-  ( E! x  e.  A  ph  <->  E. x  e.  A  (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1484   A.wral 2486   E.wrex 2487   E!wreu 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-v 2778
This theorem is referenced by:  reuccatpfxs1  11238
  Copyright terms: Public domain W3C validator