ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreuw GIF version

Theorem cbvreuw 2760
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 2763 with a disjoint variable condition. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Dec-2024.)
Hypotheses
Ref Expression
cbvreuw.1 𝑦𝜑
cbvreuw.2 𝑥𝜓
cbvreuw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuw (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvreuw
StepHypRef Expression
1 cbvreuw.1 . . . 4 𝑦𝜑
2 cbvreuw.2 . . . 4 𝑥𝜓
3 cbvreuw.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrexw 2759 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
51, 2, 3cbvrmow 2714 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
64, 5anbi12i 460 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑦𝐴 𝜓 ∧ ∃*𝑦𝐴 𝜓))
7 reu5 2749 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
8 reu5 2749 . 2 (∃!𝑦𝐴 𝜓 ↔ (∃𝑦𝐴 𝜓 ∧ ∃*𝑦𝐴 𝜓))
96, 7, 83bitr4i 212 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1506  wrex 2509  ∃!wreu 2510  ∃*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by:  reu8nf  3110
  Copyright terms: Public domain W3C validator