| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvreuw | GIF version | ||
| Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 2763 with a disjoint variable condition. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Dec-2024.) |
| Ref | Expression |
|---|---|
| cbvreuw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvreuw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvreuw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvreuw | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvreuw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvreuw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvreuw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvrexw 2759 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| 5 | 1, 2, 3 | cbvrmow 2714 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| 6 | 4, 5 | anbi12i 460 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝜓 ∧ ∃*𝑦 ∈ 𝐴 𝜓)) |
| 7 | reu5 2749 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 8 | reu5 2749 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ (∃𝑦 ∈ 𝐴 𝜓 ∧ ∃*𝑦 ∈ 𝐴 𝜓)) | |
| 9 | 6, 7, 8 | 3bitr4i 212 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1506 ∃wrex 2509 ∃!wreu 2510 ∃*wrmo 2511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-reu 2515 df-rmo 2516 |
| This theorem is referenced by: reu8nf 3110 |
| Copyright terms: Public domain | W3C validator |