ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwofdc Unicode version

Theorem nnwofdc 12474
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows  x and  y to be present in  A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1  |-  F/_ x A
nnwof.2  |-  F/_ y A
Assertion
Ref Expression
nnwofdc  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    A, j, z   
x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nnwofdc
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwodc 12472 . 2  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. w  e.  A  A. v  e.  A  w  <_  v )
2 nfcv 2350 . . 3  |-  F/_ w A
3 nnwof.1 . . 3  |-  F/_ x A
4 nfv 1552 . . . 4  |-  F/ x  w  <_  v
53, 4nfralw 2545 . . 3  |-  F/ x A. v  e.  A  w  <_  v
6 nfv 1552 . . 3  |-  F/ w A. y  e.  A  x  <_  y
7 breq1 4062 . . . . 5  |-  ( w  =  x  ->  (
w  <_  v  <->  x  <_  v ) )
87ralbidv 2508 . . . 4  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. v  e.  A  x  <_  v ) )
9 nfcv 2350 . . . . 5  |-  F/_ v A
10 nnwof.2 . . . . 5  |-  F/_ y A
11 nfv 1552 . . . . 5  |-  F/ y  x  <_  v
12 nfv 1552 . . . . 5  |-  F/ v  x  <_  y
13 breq2 4063 . . . . 5  |-  ( v  =  y  ->  (
x  <_  v  <->  x  <_  y ) )
149, 10, 11, 12, 13cbvralfw 2731 . . . 4  |-  ( A. v  e.  A  x  <_  v  <->  A. y  e.  A  x  <_  y )
158, 14bitrdi 196 . . 3  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. y  e.  A  x  <_  y ) )
162, 3, 5, 6, 15cbvrexfw 2732 . 2  |-  ( E. w  e.  A  A. v  e.  A  w  <_  v  <->  E. x  e.  A  A. y  e.  A  x  <_  y )
171, 16sylib 122 1  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    /\ w3a 981   E.wex 1516    e. wcel 2178   F/_wnfc 2337   A.wral 2486   E.wrex 2487    C_ wss 3174   class class class wbr 4059    <_ cle 8143   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by:  nnwosdc  12475
  Copyright terms: Public domain W3C validator