ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwofdc Unicode version

Theorem nnwofdc 12070
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows  x and  y to be present in  A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1  |-  F/_ x A
nnwof.2  |-  F/_ y A
Assertion
Ref Expression
nnwofdc  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    A, j, z   
x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nnwofdc
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwodc 12068 . 2  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. w  e.  A  A. v  e.  A  w  <_  v )
2 nfcv 2332 . . 3  |-  F/_ w A
3 nnwof.1 . . 3  |-  F/_ x A
4 nfv 1539 . . . 4  |-  F/ x  w  <_  v
53, 4nfralw 2527 . . 3  |-  F/ x A. v  e.  A  w  <_  v
6 nfv 1539 . . 3  |-  F/ w A. y  e.  A  x  <_  y
7 breq1 4021 . . . . 5  |-  ( w  =  x  ->  (
w  <_  v  <->  x  <_  v ) )
87ralbidv 2490 . . . 4  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. v  e.  A  x  <_  v ) )
9 nfcv 2332 . . . . 5  |-  F/_ v A
10 nnwof.2 . . . . 5  |-  F/_ y A
11 nfv 1539 . . . . 5  |-  F/ y  x  <_  v
12 nfv 1539 . . . . 5  |-  F/ v  x  <_  y
13 breq2 4022 . . . . 5  |-  ( v  =  y  ->  (
x  <_  v  <->  x  <_  y ) )
149, 10, 11, 12, 13cbvralfw 2708 . . . 4  |-  ( A. v  e.  A  x  <_  v  <->  A. y  e.  A  x  <_  y )
158, 14bitrdi 196 . . 3  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. y  e.  A  x  <_  y ) )
162, 3, 5, 6, 15cbvrexfw 2709 . 2  |-  ( E. w  e.  A  A. v  e.  A  w  <_  v  <->  E. x  e.  A  A. y  e.  A  x  <_  y )
171, 16sylib 122 1  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 835    /\ w3a 980   E.wex 1503    e. wcel 2160   F/_wnfc 2319   A.wral 2468   E.wrex 2469    C_ wss 3144   class class class wbr 4018    <_ cle 8022   NNcn 8948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-sup 7012  df-inf 7013  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558  df-fz 10038  df-fzo 10172
This theorem is referenced by:  nnwosdc  12071
  Copyright terms: Public domain W3C validator