ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwofdc Unicode version

Theorem nnwofdc 11993
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows  x and  y to be present in  A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1  |-  F/_ x A
nnwof.2  |-  F/_ y A
Assertion
Ref Expression
nnwofdc  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    A, j, z   
x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nnwofdc
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwodc 11991 . 2  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. w  e.  A  A. v  e.  A  w  <_  v )
2 nfcv 2312 . . 3  |-  F/_ w A
3 nnwof.1 . . 3  |-  F/_ x A
4 nfv 1521 . . . 4  |-  F/ x  w  <_  v
53, 4nfralw 2507 . . 3  |-  F/ x A. v  e.  A  w  <_  v
6 nfv 1521 . . 3  |-  F/ w A. y  e.  A  x  <_  y
7 breq1 3992 . . . . 5  |-  ( w  =  x  ->  (
w  <_  v  <->  x  <_  v ) )
87ralbidv 2470 . . . 4  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. v  e.  A  x  <_  v ) )
9 nfcv 2312 . . . . 5  |-  F/_ v A
10 nnwof.2 . . . . 5  |-  F/_ y A
11 nfv 1521 . . . . 5  |-  F/ y  x  <_  v
12 nfv 1521 . . . . 5  |-  F/ v  x  <_  y
13 breq2 3993 . . . . 5  |-  ( v  =  y  ->  (
x  <_  v  <->  x  <_  y ) )
149, 10, 11, 12, 13cbvralfw 2687 . . . 4  |-  ( A. v  e.  A  x  <_  v  <->  A. y  e.  A  x  <_  y )
158, 14bitrdi 195 . . 3  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. y  e.  A  x  <_  y ) )
162, 3, 5, 6, 15cbvrexfw 2688 . 2  |-  ( E. w  e.  A  A. v  e.  A  w  <_  v  <->  E. x  e.  A  A. y  e.  A  x  <_  y )
171, 16sylib 121 1  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 829    /\ w3a 973   E.wex 1485    e. wcel 2141   F/_wnfc 2299   A.wral 2448   E.wrex 2449    C_ wss 3121   class class class wbr 3989    <_ cle 7955   NNcn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by:  nnwosdc  11994
  Copyright terms: Public domain W3C validator