ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwofdc Unicode version

Theorem nnwofdc 11967
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows  x and  y to be present in  A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1  |-  F/_ x A
nnwof.2  |-  F/_ y A
Assertion
Ref Expression
nnwofdc  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    A, j, z   
x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nnwofdc
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwodc 11965 . 2  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. w  e.  A  A. v  e.  A  w  <_  v )
2 nfcv 2307 . . 3  |-  F/_ w A
3 nnwof.1 . . 3  |-  F/_ x A
4 nfv 1516 . . . 4  |-  F/ x  w  <_  v
53, 4nfralw 2502 . . 3  |-  F/ x A. v  e.  A  w  <_  v
6 nfv 1516 . . 3  |-  F/ w A. y  e.  A  x  <_  y
7 breq1 3984 . . . . 5  |-  ( w  =  x  ->  (
w  <_  v  <->  x  <_  v ) )
87ralbidv 2465 . . . 4  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. v  e.  A  x  <_  v ) )
9 nfcv 2307 . . . . 5  |-  F/_ v A
10 nnwof.2 . . . . 5  |-  F/_ y A
11 nfv 1516 . . . . 5  |-  F/ y  x  <_  v
12 nfv 1516 . . . . 5  |-  F/ v  x  <_  y
13 breq2 3985 . . . . 5  |-  ( v  =  y  ->  (
x  <_  v  <->  x  <_  y ) )
149, 10, 11, 12, 13cbvralfw 2682 . . . 4  |-  ( A. v  e.  A  x  <_  v  <->  A. y  e.  A  x  <_  y )
158, 14bitrdi 195 . . 3  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. y  e.  A  x  <_  y ) )
162, 3, 5, 6, 15cbvrexfw 2683 . 2  |-  ( E. w  e.  A  A. v  e.  A  w  <_  v  <->  E. x  e.  A  A. y  e.  A  x  <_  y )
171, 16sylib 121 1  |-  ( ( A  C_  NN  /\  E. z  z  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 824    /\ w3a 968   E.wex 1480    e. wcel 2136   F/_wnfc 2294   A.wral 2443   E.wrex 2444    C_ wss 3115   class class class wbr 3981    <_ cle 7930   NNcn 8853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by:  nnwosdc  11968
  Copyright terms: Public domain W3C validator