Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnwofdc | Unicode version |
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows and to be present in as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nnwof.1 | |
nnwof.2 |
Ref | Expression |
---|---|
nnwofdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnwodc 11965 | . 2 DECID | |
2 | nfcv 2307 | . . 3 | |
3 | nnwof.1 | . . 3 | |
4 | nfv 1516 | . . . 4 | |
5 | 3, 4 | nfralw 2502 | . . 3 |
6 | nfv 1516 | . . 3 | |
7 | breq1 3984 | . . . . 5 | |
8 | 7 | ralbidv 2465 | . . . 4 |
9 | nfcv 2307 | . . . . 5 | |
10 | nnwof.2 | . . . . 5 | |
11 | nfv 1516 | . . . . 5 | |
12 | nfv 1516 | . . . . 5 | |
13 | breq2 3985 | . . . . 5 | |
14 | 9, 10, 11, 12, 13 | cbvralfw 2682 | . . . 4 |
15 | 8, 14 | bitrdi 195 | . . 3 |
16 | 2, 3, 5, 6, 15 | cbvrexfw 2683 | . 2 |
17 | 1, 16 | sylib 121 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 DECID wdc 824 w3a 968 wex 1480 wcel 2136 wnfc 2294 wral 2443 wrex 2444 wss 3115 class class class wbr 3981 cle 7930 cn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-fzo 10074 |
This theorem is referenced by: nnwosdc 11968 |
Copyright terms: Public domain | W3C validator |