| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrmow | GIF version | ||
| Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 2764 with a disjoint variable condition. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 23-May-2024.) |
| Ref | Expression |
|---|---|
| cbvrmow.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvrmow.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvrmow.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrmow | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 2 | cbvrmow.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | nfan 1611 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 4 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 5 | cbvrmow.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfan 1611 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 7 | eleq1w 2290 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 8 | cbvrmow.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 10 | 3, 6, 9 | cbvmow 2118 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 11 | df-rmo 2516 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 12 | df-rmo 2516 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 13 | 10, 11, 12 | 3bitr4i 212 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1506 ∃*wmo 2078 ∈ wcel 2200 ∃*wrmo 2511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clel 2225 df-rmo 2516 |
| This theorem is referenced by: cbvreuw 2760 |
| Copyright terms: Public domain | W3C validator |