ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmow GIF version

Theorem cbvrmow 2691
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 2741 with a disjoint variable condition. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvrmow.1 𝑦𝜑
cbvrmow.2 𝑥𝜓
cbvrmow.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmow (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrmow
StepHypRef Expression
1 nfv 1552 . . . 4 𝑦 𝑥𝐴
2 cbvrmow.1 . . . 4 𝑦𝜑
31, 2nfan 1589 . . 3 𝑦(𝑥𝐴𝜑)
4 nfv 1552 . . . 4 𝑥 𝑦𝐴
5 cbvrmow.2 . . . 4 𝑥𝜓
64, 5nfan 1589 . . 3 𝑥(𝑦𝐴𝜓)
7 eleq1w 2268 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
8 cbvrmow.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
97, 8anbi12d 473 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
103, 6, 9cbvmow 2096 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑦(𝑦𝐴𝜓))
11 df-rmo 2494 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
12 df-rmo 2494 . 2 (∃*𝑦𝐴 𝜓 ↔ ∃*𝑦(𝑦𝐴𝜓))
1310, 11, 123bitr4i 212 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1484  ∃*wmo 2056  wcel 2178  ∃*wrmo 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clel 2203  df-rmo 2494
This theorem is referenced by:  cbvreuw  2737
  Copyright terms: Public domain W3C validator