ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexg Unicode version

Theorem ceqsexg 2840
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
Hypotheses
Ref Expression
ceqsexg.1  |-  F/ x ps
ceqsexg.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsexg  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem ceqsexg
StepHypRef Expression
1 nfcv 2299 . 2  |-  F/_ x A
2 nfe1 1476 . . 3  |-  F/ x E. x ( x  =  A  /\  ph )
3 ceqsexg.1 . . 3  |-  F/ x ps
42, 3nfbi 1569 . 2  |-  F/ x
( E. x ( x  =  A  /\  ph )  <->  ps )
5 ceqex 2839 . . 3  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
6 ceqsexg.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6bibi12d 234 . 2  |-  ( x  =  A  ->  (
( ph  <->  ph )  <->  ( E. x ( x  =  A  /\  ph )  <->  ps ) ) )
8 biid 170 . 2  |-  ( ph  <->  ph )
91, 4, 7, 8vtoclgf 2770 1  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   F/wnf 1440   E.wex 1472    e. wcel 2128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714
This theorem is referenced by:  ceqsexgv  2841
  Copyright terms: Public domain W3C validator