ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexg GIF version

Theorem ceqsexg 2901
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
Hypotheses
Ref Expression
ceqsexg.1 𝑥𝜓
ceqsexg.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexg (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsexg
StepHypRef Expression
1 nfcv 2348 . 2 𝑥𝐴
2 nfe1 1519 . . 3 𝑥𝑥(𝑥 = 𝐴𝜑)
3 ceqsexg.1 . . 3 𝑥𝜓
42, 3nfbi 1612 . 2 𝑥(∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
5 ceqex 2900 . . 3 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
6 ceqsexg.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6bibi12d 235 . 2 (𝑥 = 𝐴 → ((𝜑𝜑) ↔ (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)))
8 biid 171 . 2 (𝜑𝜑)
91, 4, 7, 8vtoclgf 2831 1 (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wnf 1483  wex 1515  wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  ceqsexgv  2902
  Copyright terms: Public domain W3C validator