ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexg GIF version

Theorem ceqsexg 2854
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
Hypotheses
Ref Expression
ceqsexg.1 𝑥𝜓
ceqsexg.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexg (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsexg
StepHypRef Expression
1 nfcv 2308 . 2 𝑥𝐴
2 nfe1 1484 . . 3 𝑥𝑥(𝑥 = 𝐴𝜑)
3 ceqsexg.1 . . 3 𝑥𝜓
42, 3nfbi 1577 . 2 𝑥(∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
5 ceqex 2853 . . 3 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
6 ceqsexg.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6bibi12d 234 . 2 (𝑥 = 𝐴 → ((𝜑𝜑) ↔ (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)))
8 biid 170 . 2 (𝜑𝜑)
91, 4, 7, 8vtoclgf 2784 1 (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  wex 1480  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  ceqsexgv  2855
  Copyright terms: Public domain W3C validator