| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsexg | GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.) |
| Ref | Expression |
|---|---|
| ceqsexg.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsexg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfe1 1520 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝑥 = 𝐴 ∧ 𝜑) | |
| 3 | ceqsexg.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfbi 1613 | . 2 ⊢ Ⅎ𝑥(∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| 5 | ceqex 2907 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 6 | ceqsexg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | bibi12d 235 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜑) ↔ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓))) |
| 8 | biid 171 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
| 9 | 1, 4, 7, 8 | vtoclgf 2836 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: ceqsexgv 2909 |
| Copyright terms: Public domain | W3C validator |