| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ceqsrexbv | Unicode version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| ceqsrexv.1 | 
 | 
| Ref | Expression | 
|---|---|
| ceqsrexbv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.42v 2654 | 
. 2
 | |
| 2 | eleq1 2259 | 
. . . . . . 7
 | |
| 3 | 2 | adantr 276 | 
. . . . . 6
 | 
| 4 | 3 | pm5.32ri 455 | 
. . . . 5
 | 
| 5 | 4 | bicomi 132 | 
. . . 4
 | 
| 6 | 5 | baib 920 | 
. . 3
 | 
| 7 | 6 | rexbiia 2512 | 
. 2
 | 
| 8 | ceqsrexv.1 | 
. . . 4
 | |
| 9 | 8 | ceqsrexv 2894 | 
. . 3
 | 
| 10 | 9 | pm5.32i 454 | 
. 2
 | 
| 11 | 1, 7, 10 | 3bitr3i 210 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 | 
| This theorem is referenced by: frecsuclem 6464 | 
| Copyright terms: Public domain | W3C validator |