ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsrexbv Unicode version

Theorem ceqsrexbv 2870
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypothesis
Ref Expression
ceqsrexv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsrexbv  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ( A  e.  B  /\  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsrexbv
StepHypRef Expression
1 r19.42v 2634 . 2  |-  ( E. x  e.  B  ( A  e.  B  /\  ( x  =  A  /\  ph ) )  <->  ( A  e.  B  /\  E. x  e.  B  ( x  =  A  /\  ph )
) )
2 eleq1 2240 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
32adantr 276 . . . . . 6  |-  ( ( x  =  A  /\  ph )  ->  ( x  e.  B  <->  A  e.  B
) )
43pm5.32ri 455 . . . . 5  |-  ( ( x  e.  B  /\  ( x  =  A  /\  ph ) )  <->  ( A  e.  B  /\  (
x  =  A  /\  ph ) ) )
54bicomi 132 . . . 4  |-  ( ( A  e.  B  /\  ( x  =  A  /\  ph ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
65baib 919 . . 3  |-  ( x  e.  B  ->  (
( A  e.  B  /\  ( x  =  A  /\  ph ) )  <-> 
( x  =  A  /\  ph ) ) )
76rexbiia 2492 . 2  |-  ( E. x  e.  B  ( A  e.  B  /\  ( x  =  A  /\  ph ) )  <->  E. x  e.  B  ( x  =  A  /\  ph )
)
8 ceqsrexv.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
98ceqsrexv 2869 . . 3  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
109pm5.32i 454 . 2  |-  ( ( A  e.  B  /\  E. x  e.  B  ( x  =  A  /\  ph ) )  <->  ( A  e.  B  /\  ps )
)
111, 7, 103bitr3i 210 1  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ( A  e.  B  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741
This theorem is referenced by:  frecsuclem  6409
  Copyright terms: Public domain W3C validator