| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cgsex4g | Unicode version | ||
| Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) |
| Ref | Expression |
|---|---|
| cgsex4g.1 |
|
| cgsex4g.2 |
|
| Ref | Expression |
|---|---|
| cgsex4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex4g.2 |
. . . . 5
| |
| 2 | 1 | biimpa 296 |
. . . 4
|
| 3 | 2 | exlimivv 1911 |
. . 3
|
| 4 | 3 | exlimivv 1911 |
. 2
|
| 5 | elisset 2777 |
. . . . . . . 8
| |
| 6 | elisset 2777 |
. . . . . . . 8
| |
| 7 | 5, 6 | anim12i 338 |
. . . . . . 7
|
| 8 | eeanv 1951 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 134 |
. . . . . 6
|
| 10 | elisset 2777 |
. . . . . . . 8
| |
| 11 | elisset 2777 |
. . . . . . . 8
| |
| 12 | 10, 11 | anim12i 338 |
. . . . . . 7
|
| 13 | eeanv 1951 |
. . . . . . 7
| |
| 14 | 12, 13 | sylibr 134 |
. . . . . 6
|
| 15 | 9, 14 | anim12i 338 |
. . . . 5
|
| 16 | ee4anv 1953 |
. . . . 5
| |
| 17 | 15, 16 | sylibr 134 |
. . . 4
|
| 18 | cgsex4g.1 |
. . . . . 6
| |
| 19 | 18 | 2eximi 1615 |
. . . . 5
|
| 20 | 19 | 2eximi 1615 |
. . . 4
|
| 21 | 17, 20 | syl 14 |
. . 3
|
| 22 | 1 | biimprcd 160 |
. . . . . 6
|
| 23 | 22 | ancld 325 |
. . . . 5
|
| 24 | 23 | 2eximdv 1896 |
. . . 4
|
| 25 | 24 | 2eximdv 1896 |
. . 3
|
| 26 | 21, 25 | syl5com 29 |
. 2
|
| 27 | 4, 26 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: copsex4g 4281 brecop 6693 |
| Copyright terms: Public domain | W3C validator |