ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximdv Unicode version

Theorem 2eximdv 1928
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
2alimdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
2eximdv  |-  ( ph  ->  ( E. x E. y ps  ->  E. x E. y ch ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem 2eximdv
StepHypRef Expression
1 2alimdv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21eximdv 1926 . 2  |-  ( ph  ->  ( E. y ps 
->  E. y ch )
)
32eximdv 1926 1  |-  ( ph  ->  ( E. x E. y ps  ->  E. x E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cgsex2g  2836  cgsex4g  2837  spc2egv  2893  spc3egv  2895  relop  4871  elres  5040  opabbrex  6047  th3q  6785  en2prde  7362  addnnnq0  7632  mulnnnq0  7633  prmuloc  7749  addsrpr  7928  mulsrpr  7929  upgrex  15897  umgredg  15937
  Copyright terms: Public domain W3C validator