ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximdv Unicode version

Theorem 2eximdv 1805
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
2alimdv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
2eximdv  |-  ( ph  ->  ( E. x E. y ps  ->  E. x E. y ch ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem 2eximdv
StepHypRef Expression
1 2alimdv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21eximdv 1803 . 2  |-  ( ph  ->  ( E. y ps 
->  E. y ch )
)
32eximdv 1803 1  |-  ( ph  ->  ( E. x E. y ps  ->  E. x E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  cgsex2g  2646  cgsex4g  2647  spc2egv  2698  spc3egv  2700  relop  4542  elres  4703  opabbrex  5626  th3q  6325  addnnnq0  6909  mulnnnq0  6910  prmuloc  7026  addsrpr  7192  mulsrpr  7193
  Copyright terms: Public domain W3C validator